On the way to M-theory

Branislav Sazdović

Institute of Physics,
University of Belgrade, Serbia

Gravity and String Theory 2018
 Zlatibor, Serbia

Outline

- Generalized Buscher approach to T-duality
- Non-geometry
- Unification of all T-dual theories in double space

Consistent superstring theories

- There are five consistent versions of superstring theory type I, type IIA, type IIB, and two heterotic string theories Mystery: why there is not just one consistent formulation?
- These theories are related in nontrivial ways Witten's conjecture: They are just special limiting cases of an eleven-dimensional theory called M -theory
- Different string theories related by T-duality and S-duality
- T-duality: Strings propagating on completely different spacetime geometries may be physically equivalent
- S-duality: System of strongly interacting strings can be viewed as a system of weakly interacting strings
- In absence of an understanding structure of M-theory, Witten has suggested that the M should stand for Magic, Mystery, or Membrane
- How to find fundamental formulation of M-theory? Construct the theory that contains initial and all dual theories
- We will investigate only T-duality

Action

Closed string action

$$
S[x]=\kappa \int_{\Sigma} d^{2} \xi \sqrt{-g}\left[\frac{1}{2} g^{\alpha \beta} G_{\mu \nu}[x]+\frac{\epsilon^{\alpha \beta}}{\sqrt{-g}} B_{\mu \nu}[x]\right] \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu}
$$

Action principle $\delta S=0$ gives equations of motion and boundary conditions

$$
\gamma_{\mu}^{(0)}(x) \delta x^{\mu} / \sigma=\pi-\gamma_{\mu}^{(0)}(x) \delta x^{\mu} / \sigma=0=0
$$

where we define σ-momentum

$$
\gamma_{\mu}^{(0)}(x) \equiv \frac{\delta S}{\delta x^{\prime \mu}}=\kappa\left(2 B_{\mu \nu} \dot{x}^{\nu}-G_{\mu \nu} x^{\prime \nu}\right)
$$

Buscher T-duality procedure for constant background 1

- Buscher procedure:
- gauging global symmetries $\delta x^{\mu}=\lambda^{\mu}$ $\partial_{\alpha} x^{\mu} \rightarrow D_{\alpha} x^{\mu}=\partial_{\alpha} x^{\mu}+v_{\alpha}^{\mu}$,
- v_{α}^{μ} gauge field
- D_{α} covariant derivative
- Field strength $F_{\alpha \beta}^{\mu}=\partial_{\alpha} v_{\beta}^{\mu}-\partial_{\beta} v_{\alpha}^{\mu}$
- T-dual theory must be Physically equivalent to initial theory $F_{01}^{\mu} \equiv F^{\mu}=0$

Buscher T-duality procedure for constant background 2

- Invariant Action

$$
S_{i n v}(x, y, v)=\kappa \int_{\Sigma} d^{2} \xi\left[\left(\frac{\eta^{\alpha \beta}}{2} G_{\mu \nu}+\varepsilon^{\alpha \beta} B_{\mu \nu}\right) D_{\alpha} x^{\mu} D_{\beta} x^{\nu}+\frac{1}{2} y_{\mu} F^{\mu}\right]
$$

- y_{μ} Lagrange multiplier
- Gauge fixing $x^{\mu}=0$
- Gauge fixed Action

$$
S_{f i x}(y, v)=\kappa \int_{\Sigma} d^{2} \xi\left[\left(\frac{\eta^{\alpha \beta}}{2} G_{\mu \nu}+\varepsilon^{\alpha \beta} B_{\mu \nu}\right) v_{\alpha}^{\mu} v_{\beta}^{\nu}+\frac{1}{2} y_{\mu} F^{\mu}\right]
$$

Buscher T-duality procedure for constant background 3

- Check
$y_{\mu}: \partial_{\alpha} v_{\beta}^{\mu}-\partial_{\beta} v_{\alpha}^{\mu}=0 \Longrightarrow v_{\alpha}^{\mu}=\partial_{\alpha} x^{\mu} \Longrightarrow S_{f i x} \rightarrow S(x)$
- Elimination of gauge fields on equations of motion produces T-dual Action

$$
\star S(y)=\kappa \int_{\Sigma} d^{2} \xi\left(\frac{\eta^{\alpha \beta}}{2} \star G^{\mu \nu}+\varepsilon^{\alpha \beta \star} B^{\mu \nu}\right) \partial_{\alpha} y_{\mu} \partial_{\beta} y_{\nu}
$$

Buscher T-duality procedure for constant background 4

- Dual Action ${ }^{*} S(y)$ has the same form as initial one, but with different background fields

$$
\begin{gathered}
\star S[y]=\kappa \int d^{2} \xi \partial_{+} y_{\mu}{ }^{\star} \Pi_{+}^{\mu \nu} \partial_{-} y_{\nu}=\frac{\kappa^{2}}{2} \int d^{2} \xi \partial_{+} y_{\mu} \theta_{-}^{\mu \nu} \partial_{-} y_{\nu} \\
\star G^{\mu \nu}=\left(G_{E}^{-1}\right)^{\mu \nu}, \quad{ }^{\star} B^{\mu \nu}=\frac{\kappa}{2} \theta^{\mu \nu}
\end{gathered}
$$

where T-dual background fields

$$
\begin{aligned}
& G_{\mu \nu}^{E} \equiv G_{\mu \nu}-4\left(B G^{-1} B\right)_{\mu \nu}, \quad \theta^{\mu \nu} \equiv-\frac{2}{\kappa}\left(G_{E}^{-1} B G^{-1}\right)^{\mu \nu} \\
& \Pi_{ \pm} \equiv B_{\mu \nu} \pm \frac{1}{2} G_{\mu \nu}, \quad \theta_{ \pm}^{\mu \nu} \equiv \theta^{\mu \nu} \mp \frac{1}{\kappa}\left(G_{E}^{-1}\right)^{\mu \nu}
\end{aligned}
$$

T-duality transformation of variables for constant background

- T-dual transformations

$$
v_{ \pm}^{\mu} \cong \partial_{ \pm} x^{\mu} \cong-\kappa \Theta_{ \pm}^{\mu \nu} \partial_{ \pm} y_{\nu}
$$

- together with inverse transformation produces

T-duality transformation of variables

$$
\partial_{ \pm} x^{\mu} \cong-\kappa \theta_{ \pm}^{\mu \nu} \partial_{ \pm} y_{\nu}, \quad \partial_{ \pm} y_{\mu} \cong-2 \Pi_{\mp \mu \nu} \partial_{ \pm} x^{\nu}
$$

- in canonical form

$$
\kappa x^{\prime \mu} \cong \star \pi^{\mu}, \quad \pi_{\mu} \cong \kappa y_{\mu}^{\prime} \quad-\kappa \dot{x}^{\mu} \cong \star \gamma_{(0)}^{\mu}(y), \quad \gamma_{\mu}^{(0)}(x) \cong-\kappa \dot{y}_{\mu}
$$

Generalized Buscher approach to T-duality (for weakly curved background) 1

- Background fields

$$
G_{\mu \nu}=\text { const }, \quad B_{\mu \nu}=b_{\mu \nu}+\frac{1}{3} B_{\mu \nu \rho} x^{\rho}, \quad B_{\mu \nu \rho}-\text { infinitesimal }
$$

- Generalized Buscher procedure:
- still, there is global symmetry $\delta x^{\mu}=\lambda^{\mu}$

$$
\delta S=\frac{\kappa}{3} B_{\mu \nu \rho} \lambda^{\rho} \varepsilon^{\alpha \beta} \int_{\Sigma} d^{2} \xi \partial_{\alpha}\left(x^{\mu} \partial_{\beta} x^{\nu}\right) \rightarrow 0
$$

- Local symmetry
- $\partial_{\alpha} x^{\mu} \rightarrow D_{\alpha} x^{\mu}=\partial_{\alpha} x^{\mu}+v_{\alpha}^{\mu}$,
- $x^{\mu} \rightarrow$? $\quad x_{i n v}^{\mu}=$?

Generalized Buscher approach to T-duality 2

- Note that $\int_{P} d \xi^{\alpha} \partial_{\alpha} x^{\mu}=x^{\mu}(\xi)-x^{\mu}\left(\xi_{0}\right) \equiv \Delta x^{\mu}$, path independent
- $\Delta x_{i n v}^{\mu}=\int_{P} d \xi^{\alpha} D_{\alpha} x^{\mu}=\Delta x^{\mu}+\Delta V^{\mu}$
- Line integral of gauge fields

$$
\Delta V^{\mu}=\int_{P} d \xi^{\alpha} v_{\alpha}^{\mu}
$$

- The same procedure as in the case of constant background, but background fields depend on V^{μ}

Generalized Buscher approach to T-duality 3

- Non-trivial (infinitesimal) variation over $v_{ \pm}^{\mu}$

$$
\begin{aligned}
& \delta_{V} S_{f i x}=-\kappa \int d^{2} \xi \beta_{\mu}^{\alpha}(V) \delta v_{\alpha}^{\mu} \\
& \beta_{\mu}^{\alpha}(V)=-\frac{1}{3} B_{\mu \nu \rho} \epsilon^{\alpha \beta} V^{\rho} \partial_{\beta} V^{\nu}
\end{aligned}
$$

- Improved equation for $v_{ \pm}^{\mu}$

$$
v_{ \pm}^{\mu} \cong-\kappa \Theta_{ \pm}^{\mu \nu}\left[\partial_{ \pm} y_{\nu} \pm 2 \beta_{\nu}^{\mp}(V)\right]
$$

- Using this equation

$$
V^{\mu}=-\kappa \theta^{\mu \nu} y_{\nu}+G_{E}^{-1 \mu \nu} \tilde{y}_{\nu} \quad\left(\dot{y}_{\mu}=\tilde{y}_{\mu}^{\prime}, \dot{\tilde{y}}_{\mu}=y_{\mu}^{\prime}\right)
$$

Source of non-locality

Non-geometry

- Two kinds
- Locally geometric, globally non-geometric
- Locally non-geometric
- Features
- T-dual along non-isometry direction
- Locally non-geometric
- non-commutativity
- non-associativity

Open string Non-commutativity

- Canonical method $\left.\gamma^{\mu}(x, \pi)\right|_{\partial \Sigma}=0$ consider as constraints
- Dirac consistency procedure $\Gamma^{\mu}(\sigma)=0$
- Solution

$$
x^{\mu}=q^{\mu}-2 \theta^{\mu \nu} \int d \sigma p_{\nu}
$$

q^{μ} and p_{μ} effective coordinates $\left\{q^{\mu}(\sigma), p_{\nu}(\bar{\sigma})\right\}=\delta_{\nu}^{\mu} \delta_{S}(\sigma, \bar{\sigma})$

- Non-commutativity of initial coordinates x^{μ} $\left\{x^{\mu}(\sigma), x^{\nu}(\bar{\sigma})\right\}=2 \theta^{\mu \nu} \theta(\sigma+\bar{\sigma})$

Closed string Non-commutativity 1

- Analogy with open string - Canonical method But there are no end points, so no boundary conditions T-duality solve the problem
- Generalized Buscher procedure in canonical form

$$
\begin{gathered}
S=\int d^{2} \xi\left[\pi_{\mu} \dot{x}^{\mu}-\mathcal{H}\left(x^{\prime \mu}, \pi_{\mu}, G, B(x)\right)\right] \\
S_{f i x}=\int d^{2} \xi\left[\pi_{\mu} v_{0}^{\mu}-\mathcal{H}\left(v_{1}^{\mu}, \pi_{\mu}, G, B(V)\right)-\kappa\left(v_{0}^{\mu} y_{\mu}^{\prime}-v_{1}^{\mu} \dot{y}_{\mu}\right)\right]
\end{gathered}
$$

- Only isometry directions, $G, B=$ const $\Longrightarrow \mathcal{H}\left(v_{1}^{\mu}, \pi_{\mu}, G, B\right)$, does not depend on V^{μ}

$$
\begin{aligned}
& v_{0}^{\mu}: \quad \pi_{\mu}=\kappa y_{\mu}^{\prime} \\
& \quad \Longrightarrow \quad\left\{y_{\mu}^{\prime}, y_{\nu}^{\prime}\right\}=0
\end{aligned} \quad y_{\mu}^{\prime} \text {-does not depend on } x^{\mu}
$$

Closed string Non-commutativity 2

- Weakly curved background
$G_{\mu \nu}=$ const $, \quad B_{\mu \nu}(V)=\frac{1}{3} B_{\mu \nu \rho} V^{\rho}, \quad V^{\mu}=\int\left(d \xi^{0} v_{0}^{\mu}+d \xi^{1} v_{1}^{\mu}\right)$
$v_{0}^{\mu}: \quad \kappa y_{\mu}^{\prime}=\pi_{\mu}-\frac{\kappa}{3} B_{\mu \nu \rho} x^{\prime \nu} x^{\rho}$
y_{μ}^{\prime} does depend on x^{μ}
- T-dual variable y_{μ} depend on both x^{μ} and π_{μ}, source of non-commutativity

$$
\begin{gathered}
\left\{y_{\mu}^{\prime}, y_{\nu}^{\prime}\right\}=\frac{1}{\kappa} B_{\mu \nu \rho} x^{\prime \rho} \delta \\
\left\{y_{\mu}(\sigma), y_{\nu}(\bar{\sigma})\right\}=-\frac{1}{\kappa} B_{\mu \nu \rho}\left[x^{\rho}(\sigma)-x^{\rho}(\bar{\sigma})\right] \theta(\sigma-\bar{\sigma}) \\
\left\{y_{\mu}(\sigma+2 \pi), y_{\nu}(\sigma)\right\}=-\frac{2 \pi}{\kappa} B_{\mu \nu \rho} N^{\rho}
\end{gathered}
$$

N^{ρ} - winding number

Closed string Non-associativity

- y_{μ}^{\prime} is square function of x^{μ} $\left\{y_{\mu}(\sigma), y_{\nu}(\bar{\sigma})\right\}$ depend linearly on x^{μ}
- Non-associativity

$$
\left\{\left\{y_{\mu}\left(\sigma_{1}\right), y_{\nu}\left(\sigma_{2}\right)\right\}, y_{\rho}\left(\sigma_{3}\right)\right\}-\left\{y_{\mu}\left(\sigma_{1}\right),\left\{y_{\nu}\left(\sigma_{2}\right), y_{\rho}\left(\sigma_{3}\right)\right\} \neq 0\right.
$$

- breaking of Jacobi identity

$$
\left\{\left\{y_{\mu}\left(\sigma_{1}\right), y_{\nu}\left(\sigma_{2}\right)\right\}, y_{\rho}\left(\sigma_{3}\right)\right\}+\operatorname{cyclic}\left(\mu, \sigma_{1}\right)\left(\nu, \sigma_{2}\right)\left(\rho, \sigma_{3}\right) \neq 0
$$

- The particular form of $V^{\mu}=-\kappa \theta^{\mu \nu} y_{\nu}+G_{E}^{-1 \mu \nu} \tilde{y}_{\nu}$ implies features of non-geometric theories
- It produces non-commutativity and non-associativity of closed string coordinates

Open string T-duality and non-geometry

- Each term must have its own T-dual

- Coupling for Neumann fields

$$
S_{A^{N}}=2 \kappa \int d \tau\left(A_{a}^{N} \dot{x}^{a} / \sigma=\pi-A_{a}^{N} \dot{x}^{a} / \sigma=0\right)
$$

- Coupling for Dirichlet fields

$$
S_{A^{D}}=2 \kappa \int d \tau\left(A_{i}^{D}(?)^{i} / \sigma=\pi-A_{i}^{D}(?)^{i} /_{\sigma=0}\right)
$$

Zwiebach approach

- Action of closed string theory is invariant under local gauge transformations

$$
\delta_{\Lambda} G_{\mu \nu}=0, \quad \delta_{\Lambda} B_{\mu \nu}=\partial_{\mu} \Lambda_{\nu}-\partial_{\nu} \Lambda_{\mu}
$$

- The open string theory is not invariant

$$
\delta_{\Lambda} S[x]=2 \kappa \int d \tau\left(\Lambda_{a} \dot{x}^{a} /_{\sigma=\pi}-\Lambda_{a} \dot{x}^{a} /_{\sigma=0}\right)
$$

- To obtain gauge invariant action we should add the term

$$
S_{A^{N}}[x]=2 \kappa \int d \tau\left(A_{a}^{N} \dot{x}^{a} / \sigma=\pi-A_{a}^{N} \dot{x}^{a} / \sigma=0\right)
$$

where newly introduced vector field A_{a}^{N} transforms with the same gauge parameter Λ_{a}

$$
\delta_{\Lambda} A_{a}^{N}=-\Lambda_{a}
$$

What is T-dual to local gauge transformations?

- If variation of energy-momentum tensor $T_{ \pm}$can be written as

$$
\delta T_{ \pm}=\left\{\Gamma, T_{ \pm}\right\}
$$

then corresponding transformation of background fields is target-space symmetry of the theory.

- $\Gamma \rightarrow \Gamma_{\Lambda}=2 \int d \sigma \Lambda_{\mu} \kappa x^{\prime \mu}$ local gauge transformations
- T-dual to $\kappa x^{\prime \mu}$ is π_{μ} so, T-dual to Γ_{Λ} is

$$
\Gamma_{\xi}=2 \int d \sigma \xi^{\mu} \pi_{\mu}
$$

and corresponding transformations have the form of general coordinate transformations

$$
\begin{gathered}
\delta_{\xi} G_{\mu \nu}=-2\left(D_{\mu} \xi_{\nu}+D_{\nu} \xi_{\mu}\right) \\
\delta_{\xi} B_{\mu \nu}=-2 \xi^{\rho} B_{o u \nu}+2 \partial_{\mu}\left(B_{\nu \rho} \xi^{\rho}\right)-2 \partial_{\nu}\left(B_{\mu \rho} \xi^{\rho}\right)
\end{gathered}
$$

Full gauge invariant action for open string

- Gauge invariant action for open string

$$
\begin{gathered}
S_{o p e n}[x]=\kappa \int_{\Sigma} d^{2} \xi \partial_{+} x^{\mu} \Pi_{+\mu \nu} \partial_{-} x^{\nu} \\
+\quad 2 \kappa \int_{\partial \Sigma} d \tau\left[A_{a}^{N}[x] \dot{x}^{a}-\frac{1}{\kappa} A_{i}^{D}[x] G^{-1 i j} \gamma_{j}^{(0)}(x)\right]
\end{gathered}
$$

where

$$
\delta_{\xi} A_{i}^{D}=-\xi_{i}
$$

- In literature
- $A_{a}^{N}[x]$ is known as massless vector field on Dp-brane
- $A_{i}^{D}[x]$ is known as massless scalar oscillations orthogonal to the Dp-brane

T-dual background fields of the open string

- T-dual background fields in terms of initial ones

$$
\begin{gathered}
\star G^{\mu \nu}=\left(G_{E}^{-1}\right)^{\mu \nu}, \quad{ }^{\star} B^{\mu \nu}=\frac{\kappa}{2} \theta^{\mu \nu} \\
{ }^{\star} A_{D}^{a}(V)=G_{E}^{-1 a b} A_{b}^{N}(V), \quad{ }^{\star} A_{N}^{i}(V)=G^{-1 i j} A_{j}^{D}(V)
\end{gathered}
$$

- T-duality interchange Neumann with Dirichlet gauge fields

$$
\begin{gathered}
V^{\mu}=-\kappa \theta^{\mu \nu} y_{\nu}+G_{E}^{-1 \mu \nu} \tilde{y}_{\nu} \\
\tilde{y}_{\mu} \equiv-\varepsilon_{\alpha}{ }^{\beta} \int d \xi^{\alpha} \partial_{\beta} y_{\mu}=\int\left(d \tau y_{\mu}^{\prime}+d \sigma \dot{y}_{\mu}\right) \\
\dot{\tilde{y}}_{\mu}=y_{\mu}^{\prime}, \quad \tilde{y}_{\mu}^{\prime}=\dot{y}_{\mu}
\end{gathered}
$$

The field strength for non-geometric theories 1

- In geometric theories the field strength for Abelian vector field is simple $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
- Because in non-geometric theories the vector field depends on V^{μ}, we expect that T-dual field strength will contain derivatives with respect to both variables y_{μ} and \tilde{y}_{μ}

The field strength for non-geometric theories 2

- We can define field strengths as

$$
\begin{aligned}
{ }^{\star} S_{A}[y]={ }^{\star} S_{A}^{D}[y]+{ }^{\star} S_{A}^{N}[y]= & 2 \kappa \eta^{\alpha \beta} \int_{\partial \Sigma} d \tau^{\star} \mathcal{A}_{\alpha}^{\mu}[V] \partial_{\beta} y_{\mu} \\
& =\kappa \int_{\Sigma} d^{2} \xi \partial_{+} y_{\mu}{ }^{\star} \mathcal{F}^{\mu \nu} \partial_{-} y_{\nu}
\end{aligned}
$$

- Write out expressions for T-dual field strengths ${ }^{*} \mathcal{F}^{\mu \nu}$ in terms of derivative of T-dual gauge fields ${ }^{\star} \mathcal{A}_{0}^{a}(V)$ and ${ }^{\star} \mathcal{A}_{1}^{a}(V)$ with respect to variables y_{μ} and \tilde{y}_{μ}

$$
\begin{aligned}
& { }^{\star} \mathcal{F}_{(a)}^{\mu \nu}=\partial_{y}^{\mu}{ }^{\star} \mathcal{A}_{0}^{\nu}(V)-\partial_{y}^{\nu}{ }^{\star} \mathcal{A}_{0}^{\mu}(V)+\partial_{\tilde{y}}^{\mu}{ }^{\star} \mathcal{A}_{1}^{\nu}(V)-\partial_{\tilde{y}}^{\nu}{ }^{\star} \mathcal{A}_{1}^{\mu}(V), \\
& { }^{\star} \mathcal{F}_{(s)}^{\mu \nu}=2\left[\partial_{\tilde{y}}^{\mu}{ }^{\star} \mathcal{A}_{0}^{\nu}(V)+\partial_{\tilde{y}}^{\nu} \mathcal{A}_{0}^{\mu}(V)+\partial_{y}^{\mu \star} \mathcal{A}_{1}^{\nu}(V)+\partial_{y}^{\nu}{ }^{\star} \mathcal{A}_{1}^{\mu}(V)\right]
\end{aligned}
$$

The field strength for non-geometric theories 3

- The red expression we can consider as a general definition of the field strength
- Beside antisymmetric part ${ }^{\star} \mathcal{F}_{(a)}^{\mu \nu}$ it also contains the symmetric one ${ }^{\star} \mathcal{F}_{(s)}^{\mu \nu}$
- In definition of both parts, derivatives with respect to both T-dual coordinate y_{μ} and to its double \tilde{y}_{μ} contribute
- The unusual form of ${ }^{\star} \mathcal{F}^{\mu \nu}$ is a consequence of two facts:

1. the T-dual vector field ${ }^{\star} A_{D}^{a}(V)$ are not multiplied by \dot{y}_{a} but with T-dual σ-momentum ${ }^{\star} G_{a b}^{-1 \star} \gamma_{(0)}^{b}$
2. the T-dual vector fields depend on V^{μ} which is function on both y_{μ} and \tilde{y}_{μ}

Unification of all T-dual theories 1

- Hull had partial success: He united all theories with d T-dualization ($d=1,2, \cdots D$)
This approach has attracted a lot of attention
But there are D-different formulations
- We still need only one theory, which contains all T-dual theories

Unification of all T-dual theories 2

- Start with T-dual transformation lows along all coordinates

$$
\begin{array}{r}
\partial_{ \pm} x^{\mu}=-\kappa \Theta_{ \pm}^{\mu \nu} \partial_{ \pm} y_{\nu} \\
\partial_{ \pm} y_{\mu}=-2 \Pi_{\mp \mu \nu} \partial_{ \pm} x^{\nu}
\end{array}
$$

- Separate parts with $\varepsilon_{ \pm}{ }^{ \pm}= \pm 1$ and $\eta_{ \pm}{ }^{ \pm}=1$

$$
\begin{array}{r}
\pm \partial_{ \pm} y=G_{E} \partial_{ \pm} x-2\left(B G^{-1}\right) \partial_{ \pm} y \\
\pm \partial_{ \pm} x=2\left(G^{-1} B\right) \partial_{ \pm} x+G^{-1} \partial_{ \pm} y
\end{array}
$$

Unification of all T-dual theories 3

- Rewrite it in doubled space

$$
\partial_{ \pm} Z^{M} \cong \pm \Omega^{M N} \mathcal{H}_{N K} \partial_{ \pm} Z^{K}
$$

with new coordinates Z^{M}

$$
Z^{M}=\binom{x^{\mu}}{y_{\mu}}
$$

where $\mathcal{H}_{M N}$ is generalized metric

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
G_{\mu \nu}^{E} & -2 B_{\mu \rho}\left(G^{-1}\right)^{\rho \nu} \\
2\left(G^{-1}\right)^{\mu \rho} B_{\rho \nu} & \left(G^{-1}\right)^{\mu \nu}
\end{array}\right)
$$

and

$$
\Omega^{M N}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Unification of all T-dual theories 4

- T-duality along all coordinates \Longleftrightarrow replacement x^{μ} with y_{μ}

$$
{ }^{\star} Z^{M}=\binom{y_{\mu}}{x^{\mu}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x^{\mu}}{y_{\mu}}=\mathcal{T} Z
$$

- Require that T-dual transformation for double coordinates * Z^{M} has the same form as initial one

$$
\partial_{ \pm}{ }^{\star} Z^{M} \cong \pm \Omega^{M N \star} \mathcal{H}_{N K} \partial_{ \pm}{ }^{\star} Z^{K}
$$

we find

$$
{ }^{\star} \mathcal{H}=\mathcal{T H} \mathcal{T}
$$

Unification of all T-dual theories 5

- T-dualization along arbitrary number of coordinates \Longleftrightarrow replacement x^{a} with $y_{a} \quad a=1,2, \cdots d$

$$
Z_{a}^{M}=\mathcal{T}^{a}{ }_{N}{ }_{N} Z^{N}\left(\begin{array}{c}
y_{a} \\
x^{i} \\
x^{a} \\
y_{i}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1_{a} & 0 \\
0 & 1_{i} & 0 & 0 \\
1_{a} & 0 & 0 & 0 \\
0 & 0 & 0 & 1_{i}
\end{array}\right)\left(\begin{array}{c}
x^{a} \\
x^{i} \\
y_{a} \\
y_{i}
\end{array}\right)
$$

Produce T-dual background fields in complete agreement with Buscher approach

Unification of all T-dual theories 6

- This interpretation of T-duality (as permutation of the coordinates in double space) works for
- Bosonic string with flat background
- Bosonic string with weakly curved background
- Type IIA and Type IIB superstrings
- Open bosonic string with gauge fields A_{a}^{N} and A_{i}^{D}
- Fermionic T-duality

Example: Three torus

- Nontrivial components of the background

$$
G_{\mu \nu}=\delta_{\mu \nu}, \quad B_{12}=-\frac{1}{2} H x^{3}
$$

- T-duality transformations between these theories

$$
{ }_{1} S\left(y_{1}, x^{2}, x^{3}\right) \longrightarrow{ }^{\mathrm{T}^{2}}{ }_{12} S\left(y_{1}, y_{2}, x^{3}\right)
$$

$$
\begin{aligned}
& \mathrm{T}^{1} \\
& \nearrow^{\mathrm{T}^{1}} \searrow^{\mathrm{T}^{3}} \\
& S\left(x^{1}, x^{2}, x^{3}\right) \xrightarrow{T^{2}} \quad{ }_{2} S\left(x^{1}, y_{2}, x^{3}\right) \quad{ }_{13} S\left(y_{1}, x^{2}, y_{3}\right) \quad \xrightarrow{T^{2}}{ }_{123} S\left(y_{1}, y_{2}, y_{3}, V^{3}\right) \\
& \mathrm{T}^{3} \\
& \mathrm{~T}^{3} \\
& \mathrm{~T}^{1} \\
& { }_{3} S\left(x^{1}, x^{2}, y_{3}\right) \longrightarrow{ }^{\mathrm{T}^{2}}{ }_{23} S\left(x^{1}, y_{2}, y_{3}\right)
\end{aligned}
$$

- In the literature the theories $S,{ }_{1} S,{ }_{12} S$ and ${ }_{123} S$ are known as theories with H, f, Q and R fluxes respectively.

All theories in red are non-geometric (with R fluxes)

Conclusion

- We constructed the theory in double space which contains all T-dual theories (2^{D})
Good candidate for M-theory
Up to now it only works for bosonic and Type II theories
- Among these 2^{D} theories there is one geometric (initial one) and $2^{D}-1$ non-geometric (All T-dual) In general case, maybe some V^{μ} can turn to function only of y_{μ}, so that some non-geometric theories can turn to geometric ones
- We should include S-duality

