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GR and QFT are two pillars of modern physics, but both theories
suffer from singularities. QFT and GR encounter problems small
distances. There is no consistent (i. e. renormalizable and unitary)
quantum theory of gravity. Modifications of QFT and GR are
needed; point-particles or/and space-time structure.
Many attempts: String theory, Loop Quantum Gravity,..
One possibility is noncommutativity among space time coordinates.
It is given by

[x*, x"] = i6"*(x) .

Canonical noncommutativity
[x#,x"] = i60"" = const.

Different models are constructed on canonical NC spacetime:
¢* QED, standard model, SUSY models;
renormalizability, unitarity, phenomenological consequences, ...



Noncommutative Gravity

GR is based on diffeomorphism symmetry. It is difficult to
generalize this symmetry to NC space-time.

Many attempts:

e NC spectral geometry [Chamseddine, Connes, Marcolli '07; Chamseddine,
Connes, Mukhanov ’14].

e Emergent gravity [Steinacker '10, '16]

e Frame formalism, operator description [Buri¢, Madore '14; Fritz,
Majid '16].

e Twist approach [Wess et al. '05, '06; Ohl, Schenckel '09; Castellani, Aschieri
'09; Aschieri, Schenkel '14].

e NC gravity as a gauge theory of Lorentz/Poincaré group
[Chamseddine '01,'04, Cardela, Zanon '03, Aschieri, Castellani '09,'12; Dobrski '16].
o Nonassociative gravity [ R. Blumenhagen, M. Fuchs, '16; P. Aschieri, M.
Dimitrijevic and R. Szabo, '18



Commutative SO(2, 3) model

Consider a gauge theory with SO(2, 3) as a gauge group.
50(2,3) is the isometry group anti de Sitter space.

Anti de Sitter space is a maximally symmetric space with a
negative constant curvature.

M ag-generators of SO(2,3) group

A, B, ... take values 0,1,2,3,5.

Commutation relations:

[Mag, Mcp) = i(napMgc +n8cMap —nacMep —nepMac), (1)

nag = diag(+, —, —, —, +) is 5D metric.



Clifford generators 4 in 5D Minkowski space satisfy
{Ta,Te} =2na8 . (2)
Mag are _
i
Mag = 5[4, Tl - (3)

va, (@ =0,1,2,3) are the gamma matrices in 4D Minkovski
spacetime
The gamma matrices in 5D are

Fa = (i7a75,75) -

s is defined by ’y =95 = 170717273



It is easy to show that

i 1
My = Z['Ya')’b] = Eaab )
i
Ms, = E'Ya' (4)

If we introduce momenta P, = %I\/Ia5,where | is a constant with
dimensions of length AdS algebra (1) becomes

[Maba Mcd] = i(nadec + 77bcMad - nachd - nbdMac)
[Maba Pc] = i(nbcPa - 773ch)
!
[Pa, Pp] = _’TzMab : (5)

In the limit / — oo AdS algebra reduces usual Poincare algebra in
4D spacetime. (Wigner-Inonu contraction)



50(2,3) gauge potential:

1 1 ab _ab 135

Wu:2 # MAB—4wHU 2w# Ya

Transformation law
dewy, = Oye + i€, wy)

Decomposition: wAB to wzb, wfﬁ,
"’b is a spin connectlon

35 1_a
wi® = 7e; are vierbeins (tetrads).



The field strength
. 1 a8
Fu = 0wy — Owy — ilwy,wy] = EFW Map

1

where 1
ab __ pab a_b b .a
FW—RW——(e e, —ee’).
Reiman curvature tensor is

ab __ ab ab ac, cb bc, ca
Rip = Ouwy” — Opwy” + wifw,” — w, wy

Torsion
ab __ a a __ a
/FW =V,e — V,,eu = T/w

(10)

(11)



We introduce an auxiliary field ¢ = ¢ T 4.
Transformation law:

This field satisfies a constraint ¢pa¢” = I2.
Action:
il
= ,LLl/po'T F VF "
! 647rc;,v/6 r(FuFpo®)
1 Vpo
S, = m‘l’r /d4xeﬂ p FuvyDpodDsp + c.c, (13)

= _; 4 MV po
= 1287TGNITr / d"xe*? D, ¢Dy,¢pDy¢ Dy (14)



Sy is Stelle-West action (1980).
S=caS5+ S + 353 (15)

is invariant under the SO(2, 3) gauge transformations.
We reduce the local anti de Sitter symmetry down to the local
Lorentz symmetry:

50(2,3) — SO(1,3)

After symmetry breaking (i. e. ¢? = 0, = /) these actions
reduce to

1 2
5= = 167TGN / d4X(166M0‘E3"“’ & ibRPCd +v-g(R - *)> ’

_ B e fl— N
2 = 167TG /dx (R /2>
_ 4 — _ =
8 = 167TGN/dXV & /2)‘




We define a general commutative model to be:

S = aSi+oS+aS;s
1

/2
_ 4 v b d
~ 167Gy /d X(Cl 166M P €abcd Ry Roo

+vV=g((a+ )R- /Ez(q +2e T+ 2C3))>’ (16)

with elj’ = %wl‘f’, —g = det e;j, R = Rujbea“eb”. The constants

c1, ¢ and c3 are arbitrary and can be determined from ¢; + ¢ = 1,
and the cosmological constant is given by

14+ +2a

A=-3—"7



Note that the cosmological constant A can be positive, negative or
zero, regardless of the symmetry of our model. In this action the
vielbeins and spin connection are independent variables. Varying
the action with respect to the spin connection we obtain an
equation which relates connection and vielbeins. The commutative
action is invariant under the Lorentz gauge transformations by
construction. In addition this action posses invariance under
general coordinate transformations. This action will be our starting
point for the construction of a noncommutative gravity theory.
References:

MacDowell Mansurri, PRL (1977)

Stelle, West, PRD, 1980

P. Townsend, PRD, 1977

F. Wilczek, PRL, 1998



Seiberg-Witten map

We work in the #—constant space or canonical NC space. The
canonical NC can be introduced by replacing the usual product by
the Moyal-Weyl % product

F(x) % g(x) = €22 37 57 £(x)g(y)]yox » (17)

where 0¥ is a constant antisymmetric matrix.
It is a small deformation parameter.

[xH * x¥] = ig"

The commutative quantities replace by their noncommutative
counterparts.



e, ®, VU, w,,
Fuv

0V = ieV
3ed = i[e, @]

dewy, = Oye + i€, wy]
el = & 1Ay

LLd Ll

Ae, &, W, @,

AMV = Ou@y — 0yl — il 5 ]
55V = iAex W

55® = i[A. * @]

5%0u = Qe + i[Ac ¥ @,

5:ﬁpu = i[/A\e H 'EW]



Commutative and noncommutative symmetries which correspond
to the same gauge group can be related by the Seiberg-Witten
map: the map enables one to express the noncommutative
variables in terms of the commutative variables. In that way no
new degrees of freedom are introduced. SW map can also be seen
as an expansion in 6#¥, so the SW approach is known as a
f0—expanded theory.



NC Gravity Action

The NC generalization of (16) is given by

Sne = aSine + @Sane + 3 S3ne (18)
with
Sine = 6471.'/GNTr /d4xe””ﬂ"ﬁuy*ﬁpa*q§,
Sove = 64W16N e T / dxe 7Gx Foy % D6 % Do+ coc.
Swe = ~pmeg T / A% 477 D, 3 % Dyd o Dydx Dy d.

It is invariant under the NC SO(2, 3), gauge symmetry and the
SW map guarantees that after the expansion it will be invariant
under the commutative SO(2, 3) gauge symmetry.



Seiberg-Witten expansion

Sne =S5O +5W 1 5@ 4 (19)
S\l =0

After the symmetry breaking the field ¢ = 0, ¢°> = /. We are
interested in the low energy expansion we keep only the terms of
the zeroth, the first and the second order in the derivatives of
vierbeins (linear in Rysys5, quadratic in T35):



Snc

m /d xe0*P 7o ((—2 +12¢) + 38¢3)Ra gy s
ToN

6 + 28c + 56¢3
+(4 — 18cy — 44c3)Ra~ s — (6 + 222 + 36¢3)g35 Ray + ,72&3‘7&35

9 9
+(5 — 52~ 73)To g Tysa + (—10 + st 1463) T, Tasa + (3 — 3c2 — 263) Ty T{;lj‘

+(1+202)Tap,T? C5 T 8Taqs Bﬁ - (2 +463)Ta«/p7":;g

+(6 — 8¢y — 8c3) Q,Yﬂer5e; + (2 + 4c2 + 12c3) T, “eﬁV(;e Tagegv,yei

(
(
(
H=
—(4 + 16c + 32C3)e;eb/3v,yefI V,;eb + (4 +12¢ + 32C3)eg;ae“VoLe‘7 Vﬂe

—(2+4c2 +8c3)gpsel’ ey V.Ye Vae +(2+4c2 + 8c3)gpsel e, pVQe Vo “)

+(2c2 + 4c3)gp6 Ty Ty — (202 +463) Tapo T, 835 + (=2 + 4c2 + 18c3) T gy e) Vse)

—6 — 8¢y — IGC3)T5pBerO,e — (2c2 + 4c3)gan T, 4 18 €a V(;e — (2c2 + 4c3)gps T, ap el Ve

(20)

a
o



Properties:

-in the zeroth order the action (20) reduces to EH action and the
cosmological constant term (arbitrary, constants ¢, and c3).

-symmetries: NC generalization preserves local Lorentz symmetry
but breaks the diffeomorphism symmetry. For example:
-Vae3 can be written (using the metricity condition) as

Vae,” = 0ne,’ + wibe p, = Mo € (21)



-opservation: models with SO(1, 3) gauge symmetry cannot have a

correction term of the form 00‘5975gmg,35 (important for NC
Minkowski corrections). Consequence of having the gauge field
(not the vierbein) as the fundamental field.

-equations of motion: variation with respect to the vierbeins and

the spin connection

1 3
. d «
des R.‘eje; eé‘fiegRJrf
(2)
-7 T _87TGN 5SNC
a e de’
(5wa g T, Cey — Tplel — T, H
(2)
_ S bp _ 716’/TGN 65NC
a

“w

(14 2 +2c3)et

e Jwab’



NC corrections to Minkowski space-time

Minkowski space-time is a solution of vacuum Einstein equations
without the cosmological constant (1 + ¢ 4+ 2¢c3 = 0). We are
interested in corrections to this solution induced by our NC gravity
model.

We assume that the NC metric is of the form:

Sy = Nuv + h/ux»

where hy,,, is a small correction that is second order in the
deformation parameter 6+,
The equation for h, is

200 W 4 0,07 — 940 h — OH) — Jp* (3,057 — D)

11 1
— ﬁ(znwewm’/ e Enmnmweaﬁmé) ) (24)



The RHS of equation (24) is constant. Therefore, these equations
are solved by a general h,, quadratic in coordinates. A solution of
the form:

goo0 = 1-— ﬁe me N xMx" — @9‘1 Hagr
gOi — _;'T]('iHOmHOnXan,
11 .
Gy — _5"1'_6?9””0]”)(,”)(”
11 . 11 .
+m5ueaﬁeaﬁr2 — ﬁeaﬂeaﬁx'xf : (25)

Scalar curvature of this solution is
R = —136°067%n,,ngs = const., (A)dS-like solution. Curvature is
induced by the noncommutativity.



The Reimann tensor for this solution can be calculated easily. A
very interesting (and unexpected) observation follows: knowing the

components of the Riemann tensor the components of the metric
tensor can be written as

go = 1— Romonx"x",
2
8oi = _7R0minxmxn7
3
1
gij = —5U—3R,'mj,,Xan. (26)

This shows that the coordinates x* we started with, are Fermi
normal coordinates.



Riemann normal coordinates: inertial coordinates in a point, can
be constructed in a small neighborhood of that point.

Fermi normal coordinates: inertial coordinates of a local observer
moving along some geodesic; can be constructed in a small
neighborhood along the geodesic (cylinder), [Manasse, Misner '63;
Chicone, Mashoon'06; Klein, Randles 11 |.

The measurements performed by the local observer moving along
the geodesic are described in the Fermi normal coordinates.
Especially, he is the one that measures ¥ to be constant! In any
other reference frame, observers will measure 6# different from
constant.



The breaking of diffeomorphism invariance is now understood
better: there is a preferred reference system defined by the Fermi
normal coordinates and the NC parameter 6*¥ is constant in that
particular reference system. The breaking Diff. symmetry can be a
consequence of fixing the coordinate system.

Let y“ be an arbitrary coordinate system at a point P in a small
neighborhood of the geodesic v which defines our FNC x* and
[x* % x¥] = i6*”. Then the noncommutativity in y-coordinates is
given by

« : 3,,a 3
Oy 0y° 1 yuvgpogrer_ 0 Oy,
Oxt Oxv 24 OxFOXPOXF OxAOX 8)((”2 7
The x-product is the Moyal-Weyl x-product and y“ are understood
as functions of FNC x*.

y* 71 = i




Following closely the notation of [Poisson, Pound, Vega,
arXiv:1102.0529]* we calculate

8y5 B

0 = eo_EeARA x'x 4.
dy” 1
é - ef—geﬁRA PO UNS (28)

Here éﬁ are vierbeins relating coordinates y“ and locally flat

coordinates in the given point P and RA,-kJ- and RA,-OJ- are
components of the Riemann tensor calculated at the geodesic ~y
(depending only on the affine parameter t along +.). Equations
(28) contain terms that are higher power in coordinates x' (indices
i,j,k,... are spacial indices) and derivatives of Riemann tensor.
We only wrote the first approximation.

'Note that we use the (4, —, —, —) signature.



Using (28) we calculate the first term in (27):

ieﬂ”%gﬁ i(eo"(égéf” —&rel) + 9”@?‘@?)
—éQOk(_S{_g - éﬁ\yég)RAiijin
—éek’(ég‘ﬁ — 838 )RA XX
—|—i00k(é2‘é§ — 858 )RA X% + ... (29)

Once the explicit form of y* (in terms of FNC x*) is given, one
can calculate [y® * y#] more explicitly.



Dirac field coupled to gravity in NC SO(2, 3),. model

Commutative action:

5 = = [ d' 7 [BD,6D,0D,6D5 — DylD,6D,6D, 0]
i m 2 vpo, 7.
+ 5g(7~ ) [ @ i {DionoD,eD,60

- D,¢D,¢D,ppDyd + DD, ¢ D, Dg¢}¢ + h.c.
After breaking the symmetry we arrive at
s= [dixe L [ Vet - Vobrv] - m [d'xedv, (0)

which is exactly the Dirac action in curved space-time for spinors
of mass m.



NC deformation

The noncommutative version of the kinetic action is

S ﬁ r— [Zg * (Dy) * (D) * (D) * (D))

(Do) * (D) * (D) % (D) % 0] -
(31)



NC correction of kinetic action in the first order at 0 is

S0 = L g8 [ty envre [ — L PFasDutD.DyoDs v

£ L IDa(DudDs 6D, ) (Dp DY)

+ é&DW(DmDm)(DﬁDMDaw

o é‘(oaD‘L¢)(DEDV¢)D,J¢DU/¢

+ % 5 {Foy, Dg$} Dy dDp Do

+ S 00,6{Fay, Dy 6}D,0D %

+ é pDy Dy ${Fap, Dgp}Dorh

_ %@D,L¢D,,¢DP¢FMDB¢ + h.c. . (32)

This action possesses ordinary SO(2,3), i.e. AdS symmetry.
Taking ¢? = 0 and ¢° = /, this symmetry is broken down to the
local Lorentz symmetry. After the symmetry breaking, the first
order kinetic term becomes
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NC corrections to the mass term are calculated similarly.
The NC action is invariant under SO(1, 3) transformation and the

charge conjugation.
There is a modification of Dirac equation in flat space-time.

_ 1-
Sne = / d*x ("0 — m)y + 67 / d*x [— 51#%0%301&

i - ]
+ 5a7%ad 1500 — Mwaaw] . (34)



1
ia—m——eaﬂ o 0805+ ——> 9 6045 7/)’756 =" MO—aB]¢ 0.

21 24/2
(35)
To simplify further analysis, we will assume 612 = —%1 =: 9 £ 0
and all other components of 0¥ equal to zero.
We consider an electron moving along z— direction.
Dispersion relation:
Eip = EF [m2 m] i4—(9(92)
’ P 1122 3P| E
Esqa = —Ep+ {”72 — m} ° +0(6°) (36)
’ PT 122 3P| E ’



P ~

[+ (Z
0
0
1
0
[1- (&

e—iErt+ipzz 7

e_iE2f—iPzZ ]

(37)



The solutions with oposite helicity have different energies. For
positive (negative) helicity solution we get

2
p m mY\ 0 5
E, [1 + (12/2 — 3/3> E—g +O(6 )} . (38)

These velocities can be rewritten in the following way:

Vi =

Via = o+ O(6?). (39)
Eip

Velocity of an electron moving in z-direction depends on its
helicity. This is analogues to the birefringence effect.



Electromagnetic field
Gauge group: SO(2,3) x U(1).
Gauge potential
Q. =w,+A,.
The field strength associated with the gauge potential €2, is
Iy = O = Ol = H; V|
and it can be decomposed as
F,u,u = Fuv + -Ful/ ’

The action:

1

Sa = —7Tr / a*x 77 (T, D, 6D, 66

+ éffomqusopqspgw) +he..
The action (43) includes an additional auxiliary field f

1
f=2f"PMap, &f =ile,f]

(40)

(41)

(42)



After SB and elimination of auxiliary field we get

1
Full NC action R =R
S=5,+5,, (46)
where
—~ 1 D0 2 2% b
Sy = _16ITr/d4xe“yp(f(f*Fw/*ngf)*Daqs*qs
+é?*?*Du$*Du¢A5*Dp$*DU$*$ + h.c.. (47)



The action for NC electrodynamics in flat space-time up to the
first order in 627 is given by

- - 1 ,
Stat —/d4x V(P — m)p — 7 / d*x Pt

(6% 1 4 1 7
+ o8 / d'x (5 FapFar P = < FapF )

= 1 7i
+9a5/d4xw<—2/0 °DgDs + — a2 aﬁ 7Yy Do

m 1 3i
_ (4/2 6/3> 0ag + faﬁ@

i 3m 1
) auDg — <4 - 4/) ]‘-043)1/), (49)



The equation of motion:
(ia— m+A+9aﬂMag)¢ — 0,

where 9"‘5./\/[&5 is given by

1 Ti o m
Maﬂ = = EUQUDﬁDo + ﬁea/gp 'Yp'YSDa — <4/2

i
= 5.7:04,/)/“2)5 + n faﬁ

/

1
6/3

(50)

1) o

(51)



NC Landau problem

Phenomenological consequences of our model and NC in general:
the NC Landau problem: an electron moving in the x-y plane in

the constant magnetic field B = B&,.
For simplicity: 812 =6 # 0 and A, = (0, By,0,0). Assume

(e

with ¢, x and E represented as powers series in 6.



Deformed energy levels, i.e., NC Landau levels are given by

Ens =E&) + EY, (53)

EX) =\/p2 + m? 4 (2n+ 5+ 1)B,

0s 2

2 B 6B
EW — _ (1_1) 14— (2n+s+1)) + ——(2n+s+1).
’ Er(v?s) 12/2 33 < (Er(r?s) + m) ) 2Er(1?s

Here s = £1 is the projection of electron spin. In the
nonrelativistic limit and with p, = 0, (53) reduces to

m 1 2n+s+1 (2n+ s +1)?
s =m0 iz = 5 ) + g B = SR Bl +00), (69

Betr = (B+60B?).

Consistent with string theory interpretation of noncommutativity
as a Neveu-Schwarz B-field.



In addition, the induced magnetic dipole moment of an electon is
given by

9

Hns=""5B

where ug = % is the Bohr magneton.

= —ug(2n+s+1)(1+6B), (55)

Some numbers:
9 = ¢ and Ayc ~ 10TeV,

Afic
-accuracy of magnetic moment measurements du, s ~ 10713,
-for observable effects in pips, B ~ 1011 T needed. This is the
magnetic field of some neutron stars (magnetars), in laboratory
B ~103T.



Conclusion

NC gravity: a general NC SO(2, 3), action studied, expansion up
to second order in the NC parameter written in a manifestly gauge
covariant way;

NC corrections to Minkowski space-time

-solution of the NC Einstein equations

-emergence of Fermi normal coordinates

-better understanding of #-constant noncomutativity

-Coupling Dirac and electromagnetic field with gravity
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