The action for scalar, Dirac and gauge field as $3-B F$ action with constraints

Tijana Radenković Dr Marko Vojinović

Gravity and String Theory: New ideas for unsolved problems III (In honour of Prof. Branislav Sazdović's retirement)

September 7-9 2018, Zlatibor, Serbia.

Outline

(1) Introduction
(2) Gravity
(3) Gauge field
4. Scalar field
(5) Fermionic field

The fundamental principle

- Spacetime is a piecewise linear manifold - it's not just a regulatar, but a physical entity.
- Field theory reconstructed only as an approximation, like in fluid mechanics.
- Nature has a physical cutoff - there is a notion of the smallest possible lenght.
- The configuration integral is defined by discretization:

$$
Z=\sum_{\{\phi\}} \prod_{v \in T} \mathcal{A}_{v}(\phi) \prod_{\epsilon \in T} \mathcal{A}_{\epsilon}(\phi) \cdots \prod_{\sigma \in T} \mathcal{A}_{\sigma}(\phi)
$$

$\mathcal{T}\left(\mathcal{M}_{D}\right)$ triangulation of a manifold \mathcal{M}_{D}

- Finite number of degrees of freedom (in a finite volume): D-simplices are flat, curvature is obtained by non-trivial joining of simplices Regge calculus
- Every object is colored with ϕ - fundamental variable, and amplitude \mathcal{A} - describing dynamics of ϕ.

Quantization procedure

- Quantization using state sums:
- Rewrite the gravitational action as a sum of the topological part of the action and the residual part:

Gravity

- topological part

$$
S_{B F C G}=\int_{M}\left(B_{a b} \wedge R^{a b}+e_{a} \wedge \nabla \beta^{a}\right)
$$

- topological part + constraint

$$
S_{G R}=\int B_{a b} \wedge R^{a b}+e_{a} \wedge G^{a}-\phi^{a b} \wedge\left(B_{a b}-\frac{1}{\left.16 \pi\right|_{p} ^{2}} \epsilon_{a b c d} e^{c} \wedge e^{d}\right)
$$

- Construct a state sum for the topological sector of the theory, using the topological quantum field theory formalism:

$$
Z^{\text {disc }}=\int\left(\prod_{\epsilon} \mathrm{d} L_{\epsilon}\right) \sum_{\left\{\Lambda_{\Delta}\right\}} \sum_{\left\{I_{\tau}\right\}} W(L, \Lambda, I)
$$

Quantization procedure

- This sum is a topological invariant independent of the triangulation.
- The integral measure is defined.
- Modification of the amplitudes in a certain way provides the transition from the topological state sum to the state sum corresponding to the complete theory.

Gravity

Category theory

- A category consists of the elements called objects and morphisms - the mappings between these objects - a group is then regarded as a category with only one object, where all morphisms are invertible.
- The 2-generalization of the notion of category - a 2-category consists of: a collection of objects, morphisms, and 2-morphisms (2-group),
- 2-group is equivalent to a crossed-module $(G, H, \triangleright, \partial)$:
- Lie group G - elements of the group being morphisms and the group operation being composition of these morphisms,
- Lie group H-contains 2-morphisms whose source is the identity, where horizontal composition is the group operation,
- horizontal conjugation of each element $h \in H$ by the element $g \in G$, i.e. an action of group G on $H \triangleright: G \rightarrow \operatorname{Aut}(H)$

- a group homomorphism that maps every 2-morphism in H to a target in $G, \partial: H \rightarrow G$:

Poincaré 2-group

- A crossed-module $(G, H, \triangleright, \partial)$, where:
- $G=S O(1,3)$,
- $H=\mathbb{R}^{4}$,
- \triangleright is a representation of the group G on H :

$$
S O(1,3) \times \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}
$$

- ∂ is trivial, i.e. every object $h \in H$ is mapped to the identity element in $G: \mathbb{R}^{4} \rightarrow 1_{S O(1,3)}$.
- Besides the connection $\mathfrak{s o}(1,3)$-albegra-valued 1-form $\omega \in \mathfrak{g}$, there is a 2 -connection given by the pair (ω, β), where $\beta \in \mathfrak{h}$ is an \mathbb{R}^{4}-albegra-valued 2-form.
- Connections transforms under G-gauge transformations:

$$
\omega \rightarrow g^{-1} \omega g+g^{-1} \mathrm{~d} g, \quad \beta \rightarrow g^{-1} \triangleright \beta
$$

and under H -gauge transformations:

$$
\omega \rightarrow \omega+\partial \eta \quad \text { i } \quad \beta \rightarrow \beta+d \eta+\omega \wedge^{\triangleright} \eta+\eta \wedge \eta .
$$

- We define holonomy g_{I} and 2-holonomy h_{f} :

$$
g_{I}=\exp \left(\int_{I} \omega\right) \in G, \quad h_{f}=\exp \left(\int_{f} \beta\right) \in H
$$

Gravitation

$2-B F$ action with constraints

- Gravity is obtained as 2 - BF action with constraints:

$$
S_{G R}=\int B_{a b} \wedge R^{a b}+e_{a} \wedge G^{a}-\phi^{a b} \wedge\left(B_{a b}-\frac{1}{16 \pi l_{p}^{2}} \epsilon_{a b c d} e^{c} \wedge e^{d}\right)
$$

- Equations of motion $(B, e, \omega, \beta, \phi)$:

$$
\begin{gather*}
R_{a b}-\phi_{a b}=0 \tag{1}\\
\nabla \beta_{a}+\frac{1}{8 \pi l_{p}^{2}} \epsilon_{a b c d} \phi^{b c} \wedge e^{d}=0 \tag{2}\\
\nabla B_{a b}-e_{[a} \wedge \beta_{b]}=0 \tag{3}\\
\nabla e_{a}=0 \tag{4}\\
B_{a b}-\frac{1}{16 \pi l_{p}^{2}} \epsilon_{a b c d} e^{c} \wedge e^{d} \tag{5}\\
\Rightarrow \beta=0 \\
\Rightarrow \epsilon^{a b c d} R_{b c} \wedge e^{d}=0
\end{gather*}
$$

Gauge field

2-group

- Crossed-module ($G, H, \triangleright, \partial$), where:
- $G=S O(1,3) \times S U(N)$,
- $H=\mathbb{R}^{4}$,
- \triangleright is a representation of the group G on H,
- ∂ is trivial: $\mathbb{R}^{4} \rightarrow 1_{S O(1,3) \times S U(N)}$.
- Covariant derivative and curvature

$$
\mathcal{F}=\mathrm{d} \omega+\omega \wedge \omega+\mathrm{d} A+A \wedge A
$$

- Bilinear form $\langle,\rangle_{\mathfrak{g}}$ such that $B \wedge F=B_{a b} \wedge R^{a b}+B_{I} \wedge F^{\prime}$

Gauge fields

2-BF action and equations of motion

$$
S_{M}=\int B_{I} \wedge F^{\prime}+\lambda^{\prime} \wedge\left(B_{I}-\alpha M_{a b l} e^{a} \wedge e^{b}\right)+\zeta^{a b^{\prime}}\left(M_{a b l} \epsilon_{i j k l} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime}-g_{I J} F^{J} \wedge e_{a} \wedge e_{b}\right),
$$

$$
M_{a b l}=-\frac{1}{\alpha} \zeta_{a b l}
$$

Equations of motion:

$$
\mathrm{B}_{\mid \alpha \beta}=2 \alpha M_{a b \mid} e_{\alpha}^{a} e_{\beta}^{b}
$$

- $-\mathrm{d} B_{I}+B_{A} \wedge C^{A}{ }_{J I} A^{J}+\mathrm{d}\left(\zeta_{l}^{a b} e_{a} \wedge e_{b}\right)-\zeta_{A}^{a b} e_{a} \wedge e_{b} \wedge C^{A}{ }_{\jmath l} A^{J}=0$

$$
\zeta^{a b l}=\frac{e}{48} \alpha \epsilon^{\alpha \beta \gamma \gamma}{ }_{\alpha}^{\alpha}{ }_{\alpha \beta}^{1} e_{\gamma}^{a} e_{\delta}^{b}
$$

- $\nabla \beta_{a}+\frac{1}{8 \pi l_{p}^{2}} \epsilon_{a b c d} \phi^{b c} \wedge e^{d}-2 \alpha M_{a b l} \lambda^{\prime} \wedge e^{b}+4 \zeta^{r s} M_{r s l} \epsilon_{a j k l} e^{j} \wedge e^{k} \wedge e^{\prime}-2 \zeta_{a b}{ }^{\prime} F_{I} \wedge e^{b}=0$

$$
\frac{R^{\sigma \rho}-\frac{1}{2} g^{\sigma \rho} R=8 \pi I_{\rho}^{2}\left(-\frac{1}{4}\left(F_{\mu \nu}^{\prime} F_{l}^{\mu \nu} g^{\rho \sigma}+4 F_{l}^{\sigma \nu} F_{\nu}^{\prime}{ }^{\rho}\right)\right) \cdot}{\left(\left(\nabla_{\rho} F^{\rho \alpha}\right)_{I}=0 .\right.} .
$$

Scalar field

3-group

- 3-category consists of objects, morphisms, 2-morphisms and 3-morphisms.
- 3-group is equivalent to 2-crossed-module
- Lie groups L, G and H,
- group homomorphisms ∂ and δ :

$$
L \xrightarrow{\delta} E \xrightarrow{\partial} G,
$$

- an action \triangleright of the group G on groups L and E,
- G-eqiuvariant function $\{\}:, E \times E \rightarrow L$, that has certain properties.
- Lie algebra-valued differential forms $\omega \in \mathcal{A}^{1}(M, \mathfrak{g})$, $\beta \in \mathcal{A}^{2}(M, \mathfrak{e})$ and $\gamma \in \mathcal{A}^{3}(M, \mathfrak{l})$,
- 2-curvature 3-form $(\omega, \beta): \Omega=\mathrm{d} \omega+\omega \wedge \omega$, curvature of ω, and $\Gamma=\mathrm{d} \beta+\omega \wedge^{\triangleright} \beta$, covariant derivative of β,
- 3-curvature 4-form $(\omega, \beta, \gamma): \Theta=d \gamma+\omega \wedge^{\triangleright} \gamma-\beta \wedge^{\{,\}} \beta$.

Scalar field

Action and equations of motion

- Action for scalar field

$$
\begin{aligned}
S_{s c a l a r}=\int \phi \mathrm{d} B+\chi \wedge(B & \left.-\gamma H_{a b c} e^{a} \wedge e^{b} \wedge e^{c}\right)+\Lambda^{a b} \wedge\left(H_{a b c} \epsilon^{c d e f} e_{d} \wedge e_{e} \wedge e_{f}-F \wedge e_{a} \wedge e_{b}\right) \\
& -\frac{1}{4!} \gamma m^{2} \phi^{2} \epsilon_{i j k l} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime}
\end{aligned}
$$

- Equations of motion:
- $\mathrm{H}_{a b c}=\frac{1}{3!e} \epsilon_{\alpha \beta \gamma \delta} F^{\alpha} e_{a}^{\beta} e_{b}^{\gamma} e_{c}^{\delta}$
- $\chi=F$
- $\Lambda_{a b \alpha}=\frac{1}{3!e} \gamma \epsilon_{\alpha \beta \gamma \delta} F^{\beta} e_{a}^{\gamma} e_{b}^{\delta}$

Equations for motion for ϕ and e^{a}

- $\operatorname{dB}-\mathrm{d}\left(\wedge^{a b} \wedge e_{a} \wedge e_{b}\right)-\frac{2}{4!} \gamma m^{2} \phi \epsilon_{i j k l} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime}=0$
- $\nabla \beta_{a}+\frac{1}{8 \pi l_{p}^{2}} \epsilon_{a b c d} \phi^{b c} \wedge e^{d}+3 \gamma H_{a b c} \lambda \wedge e^{b} \wedge e^{c}+3 H^{i j k} \epsilon_{a k b c} \Lambda_{i j} \wedge e^{b} \wedge e^{c}$ $-2 \Lambda_{a b} \wedge F \wedge e^{b}-4 \frac{1}{4!} \gamma m^{2} \phi \epsilon_{a j k l} e^{j} \wedge e^{k} \wedge e^{\prime}=$

$$
\begin{array}{r}
\partial_{\alpha}\left(e F^{\alpha}\right)-e m^{2} \phi=0 \\
R_{\gamma}^{\delta}-\frac{1}{2} \delta_{\gamma}^{\delta} R=F_{\gamma} F^{\delta}-\delta_{\gamma}^{\delta} \frac{1}{2}\left(F_{\alpha} F^{\alpha}-m^{2} \phi^{2}\right)
\end{array}
$$

Fermions

Action and equations of motion

- Action

$$
\begin{aligned}
S_{\text {fermion }}=\int & \left(\psi^{\tilde{\alpha}}\left(\gamma_{1} \overleftarrow{\nabla}\right)_{\tilde{\alpha}}+\lambda_{1}^{\tilde{\alpha}} \wedge\left(\gamma_{1 \tilde{\alpha}}-i \kappa_{1} \epsilon_{a b c d} e^{a} \wedge e^{b} \wedge e^{c}\left(\bar{\psi} \gamma^{d}\right)_{\tilde{\alpha}}\right)\right. \\
& -\bar{\psi}_{\tilde{\alpha}}\left(\vec{\nabla} \gamma_{2}\right)^{\tilde{\alpha}}-\lambda_{2 \tilde{\alpha}} \wedge\left(\gamma_{2}^{\tilde{\alpha}}-i \kappa_{1} \epsilon_{a b c d} e^{a} \wedge e^{b} \wedge e^{c}\left(\gamma^{d} \psi\right)^{\tilde{\alpha}}\right) \\
& \left.+i \kappa_{1} \epsilon_{a b c d} e^{a} \wedge e^{b} \wedge e^{c} \wedge \bar{\psi} \frac{i m}{2} e^{d} \psi\right)+i 16 \pi l_{p}^{2} \kappa_{2} \int \epsilon_{a b c d} e^{a} \wedge e^{b} \wedge \beta^{c} \bar{\psi} \gamma_{5} \gamma^{d} \psi
\end{aligned}
$$

- Equations of motion:

$$
R^{\rho \sigma}-\frac{1}{2} g^{\rho \sigma} R=8 \pi I_{p}^{2}\left(\frac{i}{2} \bar{\psi}\left(\gamma^{\sigma} \stackrel{\leftrightarrow}{\nabla}^{\rho}-\gamma^{a} \stackrel{\leftrightarrow}{\nabla_{a}} g^{\sigma \rho}+2 i m g^{\sigma \rho}\right) \psi\right)
$$

$$
\left(i \gamma^{\mu} \nabla_{\mu}-m\right) \psi=0
$$

Fermions

- Equations of motion for $\omega_{a b}, \beta_{a}, \phi_{a b}$:

$$
\begin{gathered}
\nabla B_{a b}-e_{[a} \wedge \beta_{b]}-2 \kappa_{2} \epsilon_{a b c d} e^{c} \wedge s^{d}=0 \\
\nabla e_{a}+16 \pi I_{p}^{2} \kappa_{2} s_{a}=0 \\
\mathrm{~B}_{a b}-\frac{1}{16 \pi \Sigma_{p}^{2}} \epsilon_{a b c d} e^{c} \wedge e^{d}=0
\end{gathered}
$$

As in the case without matter $\nabla B^{a b}=-\frac{1}{8 \pi l_{p}^{2}} a^{a b c d}\left(e_{c} \wedge \nabla e_{d}\right)$

$$
2 \epsilon_{a b c d} e^{c} \wedge\left(\frac{1}{16 \pi I_{p}^{2}} \nabla e^{d}+\kappa_{2} s^{d}\right)+e_{[a} \wedge \beta_{b]}=0
$$

This equaton gives $e_{[a} \wedge \beta_{b]}=0$, such that $\beta^{a}=0$.

- Total action $S_{G R}+S_{G}+S_{F}$ gives equations of motion:

$$
\left(\nabla_{\alpha} F^{\alpha \beta}\right)_{I}=i g j_{l}^{\beta}
$$

$$
R^{\sigma \rho}-\frac{1}{2} g^{\sigma \rho} R=8 \pi I_{p}^{2}\left(-\frac{1}{4 g}\left(F_{\mu \nu}^{\prime} F_{I}^{\mu \nu} g^{\rho \sigma}+4 F_{I}^{\sigma \nu} F^{\prime}{ }_{\nu}{ }^{\rho}\right)+\frac{i}{2} \bar{\psi}\left(\gamma^{\sigma} \stackrel{\nabla}{ }^{\rho}-\gamma^{a} \overleftrightarrow{\nabla}_{a} g^{\sigma \rho}-2 i m g^{\sigma \rho}\right) \psi\right)
$$

Total action

$$
\begin{aligned}
S & =\int\left[B_{\hat{a}} \wedge \mathcal{F}^{\hat{a}}+e_{\hat{\alpha}} \wedge \mathcal{G}^{\hat{\alpha}}+D_{\hat{A}} \wedge \mathcal{H}^{\hat{A}}\right. \\
& +\lambda^{\hat{a}} \wedge\left(B_{\hat{a}}-C_{\hat{a}}{ }^{b} M_{\hat{b}_{c c}} e^{c} \wedge e^{d}\right)+\lambda^{\hat{A}} \wedge\left(\gamma_{\hat{A}}-e^{a} \wedge e^{b} \wedge e^{c} C_{\hat{A}} \hat{B}^{\hat{a}} M_{a b c \hat{B}}\right) \\
& +\zeta_{\hat{a}}^{c d}\left(M^{\hat{a}}{ }_{c d} \epsilon_{i j k l} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{l}-F^{\hat{a}} \wedge e_{c} \wedge e_{d}\right)+\zeta^{a b}{ }_{\hat{A}} \wedge\left(M_{a b c}{ }^{\hat{A}} \epsilon^{c d e f} e_{d} \wedge e_{e} \wedge e_{f}-F^{\hat{A}} \wedge e_{a} \wedge e_{b}\right) \\
& -\epsilon_{i j k l} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{\prime}\left(D_{\hat{A}} C^{\hat{A}}{ }_{\hat{B}} M^{\hat{B}}{ }_{\hat{C}} D^{\hat{C}}+i \kappa_{2} \epsilon_{a b c d} e^{a} \wedge e^{b} \wedge \beta^{c} \bar{\psi} \gamma_{5} \gamma^{d} \psi\right]
\end{aligned}
$$

where:

$$
\begin{aligned}
& B_{\hat{a}}=\left[\begin{array}{ll}
B_{a b} & B_{l}
\end{array}\right], \quad \mathcal{F}_{\hat{a}}=\left[\begin{array}{ll}
R_{a b} & F_{l}
\end{array}\right], \quad D_{\hat{A}}=\left[\begin{array}{lll}
\phi & \psi_{\tilde{\alpha}} & \bar{\psi}^{\tilde{\alpha}}
\end{array}\right], \quad \mathcal{H}_{\hat{A}}=\left[\begin{array}{lll}
\mathrm{d} \gamma & \left(\gamma_{1} \overleftarrow{\nabla}\right)_{\tilde{\alpha}} & -\left(\vec{\nabla} \gamma_{2}\right)^{\tilde{\alpha}}
\end{array}\right], \\
& \gamma_{\hat{A}}=\left[\begin{array}{lll}
\gamma & \gamma_{1 \tilde{\alpha}} & \gamma_{2}{ }^{\tilde{\alpha}}
\end{array}\right], \quad \lambda_{\hat{a}}=\left[\begin{array}{ll}
-\lambda_{a b} & \lambda_{1}
\end{array}\right], \quad M_{\hat{a} c d}=\left[\begin{array}{ll}
\epsilon_{a b c d} & M_{c d 1}
\end{array}\right], \quad \zeta_{\hat{a}}^{c d}=\left[\begin{array}{ll}
0 & \zeta^{c d}
\end{array}\right] \text {, } \\
& \lambda_{\hat{A}}=\left[\begin{array}{lll}
\lambda & \lambda_{1 \tilde{\alpha}} & -\lambda_{2}{ }^{\tilde{\alpha}}
\end{array}\right], \quad M_{a b c \hat{A}}=\left[\begin{array}{llll}
M_{a b c} & \epsilon_{a b c d}\left(\bar{\psi} \gamma^{d}\right)_{\tilde{\alpha}} & \epsilon_{a b c d}\left(\gamma^{d} \psi\right)^{\tilde{\alpha}}
\end{array}\right], \quad \zeta_{a b \hat{A}}=\left[\begin{array}{lll}
\zeta_{a b} & 0 & 0
\end{array}\right], \\
& C^{\hat{a}}{ }_{\hat{b}}=\left[\begin{array}{ll}
G & \\
& \alpha
\end{array}\right], \quad C^{\hat{A}}{ }_{\hat{B}}=\left[\begin{array}{lll}
\gamma & & \\
& \kappa_{1} & \\
& & \kappa_{1}
\end{array}\right], \quad M_{\hat{B}}^{\hat{A}}=\left[\begin{array}{lll}
\frac{1}{4!} m_{\text {scal }} & & \\
& m_{\text {fer }} &
\end{array}\right] \text {. }
\end{aligned}
$$

Conclusions

- Overview of results:
- The action for gravitation, gauge, scalar and Fermion fields can be written as $3-B F$ action with constraints.
- There is a part of the structure of 3-group that corresponds to scalar and fermionic fields, i.e. there is a Lie group associated to matter sector.
- Topics for futher research:
- Find a 3-group that produce needed matter section.
- Quantization.

Thank you!

-

