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Introduction

The fundamental principle

@ Spacetime is a piecewise linear manifold - it's not just a regulatar, but a
physical entity.

@ Field theory reconstructed only as an approximation, like in fluid
mechanics.

@ Nature has a physical cutoff - there is a notion of the smallest possible
lenght.

@ The configuration integral is defined by discretization:

z=3 J[A@ ] A ] As(e).

{¢p} veT eeT oeT

T (Mp) triangulation of a manifold Mp

e Finite number of degrees of freedom (in a
finite volume): D-simplices are flat, curvature
is obtained by non-trivial joining of simplices -
Regge calculus

o Every object is colored with ¢ - fundamental
variable, and amplitude A - describing

v dynamics of ¢.




Introduction

Quantization procedure

@ Quantization using state sums:
o Rewrite the gravitational action as a sum of the topological part of
the action and the residual part:

Gravity

@ topological part
Sgrce = / (Bab A R?® + &, AVS?)
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o topological part + constraint
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o Construct a state sum for the topological sector of the theory, using
the topological quantum field theory formalism:

Z%e = / <1:IdL€) ST w(LA
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Introduction

Quantization procedure

@ This sum is a topological invariant independent of the triangulation.
@ The integral measure is defined.

@ Modification of the amplitudes in a certain way provides the transition
from the topological state sum to the state sum corresponding to the
complete theory.






Gravity

Category theory

@ A category consists of the elements called objects and morphisms - the
mappings between these objects - a group is then regarded as a category
with only one object, where all morphisms are invertible.

@ The 2-generalization of the notion of category - a 2-category consists of:
a collection of objects, morphisms, and 2-morphisms (2-group),

@ 2-group is equivalent to a crossed-module (G, H,>,0):

o Lie group G - elements of the group being morphisms and the
group operation being composition of these morphisms,

o Lie group H - contains 2-morphisms whose source is the identity,
where horizontal composition is the group operation,

o horizontal conjugation of each element h € H by the element
g € G, i.e. an action of group G on H > : G — Aut(H)
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@ a group homomorphism that maps every 2-morphism in H to a
target in G, 0: H — G:



Gravity

Poincaré 2-group

@ A crossed-module (G,H,>,0), where:
o G=50(1,3),
o H =R
e [> is a representation of the group G on H:
SO(1,3) x R* — R4,
e O is trivial, i.e. every object h € H is mapped to the identity
element in G: R* — 1s50(1,3).

@ Besides the connection so(1, 3)-albegra-valued 1-form w € g, there is a
2-connection given by the pair (w, 8), where 8 € b is an
R*-albegra-valued 2-form.

@ Connections transforms under G-gauge transformations:

w—glwgtg 'dg, B—g B,
and under H-gauge transformations:
w—wt+on i B=BrdptwA"ntnAn.

@ We define holonomy g; and 2-holonomy hy:

g,:exp(/w)EG, hf=exp</Fﬂ>€H-
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Gravitation
2 — BF action with constraints

@ Gravity is obtained as 2 — BF action with constraints:

Scr = /Bab A\ Rab + e N G? — ¢ab AN (Bab — eabcdec A\ ed)
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@ Equations of motion ( B, e,w, 8, ¢):

Rab — ¢ab =0 (1)

VB + o /2 €abcad™ A e’ =0 (2)

VB — e AP =0 (3)

Ve, =0 (4)

Bap — Tirlgﬁabcdec Ae’ (5)
=0=0
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Gauge field

e Crossed-module (G,H,>,0), where:

G = SO(1,3)xSU(N),

o H=R?

e > is a representation of the group G on H,
o O is trivial: R* — 150(1,3)x5U(N)-

@ Covariant derivative and curvature
F=dwt+wAw+dA+AANA

@ Bilinear form (, >g such that BAF = B,y A R?® + By A F!
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Gauge fields

2-BF action and equations of motion

Sy = f B A Fle XA (B/ — aM,pe? A eb) + Cabl(Mable,‘jk/ei Nelneknel — g[JFJ Nes A\ &‘b)7
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Scalar field

@ 3-category consists of objects, morphisms, 2-morphisms and
3-morphisms.
@ 3-group is equivalent to 2-crossed-module

o Lie groups L, G and H,
e group homomorphisms 0 and §:

L% ES G,

@ an action > of the group G on groups L and E,
e G-eqiuvariant function {,} : E x E — L, that has certain
properties.
o Lie algebra-valued differential forms w € A(M, g),
B e A%(M,¢) and v € A3(M, 1),
@ 2-curvature 3-form (w, 3): Q = dw 4+ w A w, curvature of w,
and I = dfS + w A" 3, covariant derivative of j3,

@ 3-curvature 4-form (w, 3,7): © = dy +w A” v — ALY 3.
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Scalar field

Action and equations of motion
@ Action for scalar field

Sescalar = /qﬁdB + XA (B —=7Hapce® A eP A )+ N (HabceCdefed NeeNer —F NesAep)
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e Equations of motion:

Equations for motion for ¢ and e?
® Hape = s€apysFoele] el
@ dB-d(A® A e, A ey) — ZymPoee’ A&l Aek Nel =0
e x=F
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Fermionic field

Fermions
Action and equations of motion

@ Action
~ — - -
Stermion = /(1/)0('YIV)& + )\(11 A ('71& - ""‘Clﬁabcdea A eb A ec(i/)'}/d)&)
G M b d G
—Ya(Vy2) — Aaa A (72" — iki€apeae™ A €7 A e (v74)%)
+ ik1€apege® N eP A e€ A 1/7%6"1/)) + 16732 /eabcde" A e A BEPrysy .

@ Equations of motion:

1 [ - “p hnd
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Fermions

@ Equations of motion for w,p, Ba, dab:
VB, — €la N ﬁb] — 2K2€apcd €S N s9=0
Ve, + 1671'/3/{253 =0

1 d
Bap — T,,r/gfabcdec Ne? =0

As in the case without matter VB3 = —_L1_¢abcd (o A Vey
87rlp

2 €apcd €5 N ( ved + H25d> + e ﬁb] =0.
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This equaton gives e, A B = 0, such that 37 = 0.
@ Total action Sgr + S¢ + S gives equations of motion:

(VaF*%), = igj]

ap 1 op 2 I ppv po ovpl P i- phade Pras op R AW
R70 — Sg7'R = 8rl; (F F{"g" + 4F; F,,)+§¢(7V —77V.g7° — 2img”P )Y

v




Fermionic field

Total action

S= / [B.aAf5+eaA9‘"‘+DMHA
F XA (B — G M; g A e®) + M
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Conclusions

Conclusions

@ Overview of results:

e The action for gravitation, gauge, scalar and Fermion fields
can be written as 3 — BF action with constraints.

o There is a part of the structure of 3-group that corresponds to
scalar and fermionic fields, i.e. there is a Lie group associated
to matter sector.

@ Topics for futher research:

e Find a 3-group that produce needed matter section.
o Quantization.
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