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The fundamental principle

Spacetime is a piecewise linear manifold - it’s not just a regulatar, but a
physical entity.
Field theory reconstructed only as an approximation, like in fluid
mechanics.
Nature has a physical cutoff - there is a notion of the smallest possible
lenght.
The configuration integral is defined by discretization:

Z =
∑
{φ}

∏
v∈T

Av (φ)
∏
ε∈T

Aε(φ) · · ·
∏
σ∈T

Aσ(φ),

T (MD) triangulation of a manifoldMD

Finite number of degrees of freedom (in a
finite volume): D-simplices are flat, curvature
is obtained by non-trivial joining of simplices -
Regge calculus

Every object is colored with φ - fundamental
variable, and amplitude A - describing
dynamics of φ.
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Quantization procedure

Quantization using state sums:
Rewrite the gravitational action as a sum of the topological part of
the action and the residual part:

Gravity

topological part

SBFCG =

∫
M

(Bab ∧ Rab + ea ∧∇βa)

topological part + constraint

SGR =

∫
Bab ∧ Rab + ea ∧ G a − φab ∧ (Bab −

1
16πl2p

εabcde
c ∧ ed)

Construct a state sum for the topological sector of the theory, using
the topological quantum field theory formalism:

Z disc =

∫ (∏
ε

dLε
) ∑
{Λ∆}

∑
{Iτ}

W (L,Λ, I )
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Quantization procedure

This sum is a topological invariant independent of the triangulation.

The integral measure is defined.

Modification of the amplitudes in a certain way provides the transition
from the topological state sum to the state sum corresponding to the
complete theory.
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Gravity
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Category theory

A category consists of the elements called objects and morphisms - the
mappings between these objects - a group is then regarded as a category
with only one object, where all morphisms are invertible.
The 2-generalization of the notion of category - a 2-category consists of:
a collection of objects, morphisms, and 2-morphisms (2-group),
2-group is equivalent to a crossed-module (G ,H,�, ∂):

Lie group G - elements of the group being morphisms and the
group operation being composition of these morphisms,
Lie group H - contains 2-morphisms whose source is the identity,
where horizontal composition is the group operation,
horizontal conjugation of each element h ∈ H by the element
g ∈ G , i.e. an action of group G on H � : G → Aut(H)

• •

g

ww

g

gg 1g�� •

1•

ww

∂h

gg h�� •

g−1

ww

g−1

gg 1−1
g��

= • •
1

ww

∂(g�h)

gg g�h��
,

a group homomorphism that maps every 2-morphism in H to a
target in G , ∂ : H → G :

• •

1•

yy

∂h

ee h��
.
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Poincaré 2-group

A crossed-module (G ,H,�,∂), where:
G = SO(1, 3),
H = R4,
� is a representation of the group G on H:
SO(1, 3)× R4 → R4,
∂ is trivial, i.e. every object h ∈ H is mapped to the identity
element in G : R4 → 1SO(1,3).

Besides the connection so(1, 3)-albegra-valued 1-form ω ∈ g, there is a
2-connection given by the pair (ω, β), where β ∈ h is an
R4-albegra-valued 2-form.
Connections transforms under G -gauge transformations:

ω → g−1ωg + g−1dg , β → g−1 � β ,

and under H-gauge transformations:

ω → ω + ∂η i β → β + dη + ω ∧� η + η ∧ η.

We define holonomy gl and 2-holonomy hf :

gl = exp

(∫
l

ω

)
∈ G , hf = exp

(∫
f

β

)
∈ H.
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Gravitation
2− BF action with constraints

Gravity is obtained as 2− BF action with constraints:

SGR =

∫
Bab ∧ Rab + ea ∧ G a − φab ∧ (Bab −

1
16πl2p

εabcde
c ∧ ed)

Equations of motion ( B, e, ω, β, φ):

Rab − φab = 0 (1)

∇βa +
1

8πl2p
εabcdφ

bc ∧ ed = 0 (2)

∇Bab − e[a ∧ βb] = 0 (3)

∇ea = 0 (4)

Bab −
1

16πl2p
εabcde

c ∧ ed (5)

⇒ β = 0

⇒ εabcdRbc ∧ ed = 0
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Gauge field
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2-group

Crossed-module (G ,H,�,∂), where:
G = SO(1, 3)xSU(N),
H = R4,
� is a representation of the group G on H,
∂ is trivial: R4 → 1SO(1,3)xSU(N).

Covariant derivative and curvature

F = dω + ω ∧ ω + dA + A ∧ A

Bilinear form 〈, 〉g such that B ∧ F = Bab ∧ Rab + BI ∧ F I



Introduction Gravity Gauge field Scalar field Fermionic field Conclusions

Gauge fields
2-BF action and equations of motion

SM =
∫
BI ∧ F I + λI ∧ (BI − αMabI e

a ∧ eb) + ζab
I
(MabI εijkle

i ∧ e j ∧ ek ∧ e l − gIJF
J ∧ ea ∧ eb),

MabI = − 1
αζabI

BIαβ = 2αMabI e
a
αe

b
β

ζabI = e
48αε

αβγδF I
αβe

a
γe

b
δ

Equations of motion:
−dBI + BA ∧ CA

JIA
J + d(ζabI ea ∧ eb)− ζabA ea ∧ eb ∧ CA

JIA
J = 0

∇βa +
1

8πl2p
εabcdφ

bc ∧ ed − 2αMabIλ
I ∧ eb + 4ζrs IMrs I εajkle

j ∧ ek ∧ e l − 2ζabIFI ∧ eb = 0

Rσρ − 1
2
gσρR = 8πl2p

(
− 1

4
(
F I
µνF

µν
I gρσ + 4F σνI F I

ν
ρ))

, α = 12
g ,

(∇ρF ρα)I = 0 .
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Scalar field
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3-group

3-category consists of objects, morphisms, 2-morphisms and
3-morphisms.
3-group is equivalent to 2-crossed-module

Lie groups L, G and H,
group homomorphisms ∂ and δ:

L
δ−→ E

∂−→ G ,

an action � of the group G on groups L and E ,
G -eqiuvariant function {, } : E × E → L, that has certain
properties.

Lie algebra-valued differential forms ω ∈ A1(M, g),
β ∈ A2(M, e) and γ ∈ A3(M, l),
2-curvature 3-form (ω, β): Ω = dω + ω ∧ ω, curvature of ω,
and Γ = dβ + ω ∧� β, covariant derivative of β,
3-curvature 4-form (ω, β, γ): Θ = dγ + ω ∧� γ − β ∧{,} β.
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Scalar field
Action and equations of motion

Action for scalar field

Sscalar =

∫
φ dB + χ ∧ (B − γHabce

a ∧ eb ∧ ec) + Λab ∧ (Habcε
cdef ed ∧ ee ∧ ef − F ∧ ea ∧ eb)

− 1
4!
γm2φ2εijkle

i ∧ e j ∧ ek ∧ e l

Equations of motion:

Habc = 1
3!e εαβγδF

αeβa e
γ
b e

δ
c

χ = F

Λabα = 1
3!e γεαβγδF

βeγa e
δ
b

Equations for motion for φ and ea

dB-d(Λab ∧ ea ∧ eb)− 2
4!γm

2φεijkle
i ∧ e j ∧ ek ∧ e l = 0

∇βa +
1

8πl2p
εabcdφ

bc ∧ ed + 3γHabcλ ∧ eb ∧ ec + 3H ijkεakbcΛij ∧ eb ∧ ec

− 2Λab ∧ F ∧ eb − 4
1
4!
γm2φεajkle

j ∧ ek ∧ e l =

∂α(eFα)− em2φ = 0

Rδγ −
1
2
δδγR = FγF

δ − δδγ
1
2

(
FαF

α −m2φ2
)
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Fermionic field
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Fermions
Action and equations of motion

Action
Sfermion =

∫ (
ψα̃(γ1

←
∇)α̃ + λα̃1 ∧ (γ1α̃ − iκ1εabcde

a ∧ eb ∧ ec(ψ̄γd)α̃)

− ψ̄α̃(
→
∇γ2)

α̃

− λ2α̃ ∧ (γ2
α̃ − iκ1εabcde

a ∧ eb ∧ ec(γdψ)α̃)

+ iκ1εabcde
a ∧ eb ∧ ec ∧ ψ̄ im

2
edψ

)
+ i16πl2pκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γ
dψ.

Equations of motion:

Rρσ − 1
2
gρσR = 8πl2p

(
i

2
ψ̄(γσ

↔
∇
ρ

− γa
↔
∇ag

σρ + 2imgσρ)ψ

)

(iγµ∇µ −m)ψ = 0
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Fermions

Equations of motion for ωab, βa, φab:

∇Bab − e[a ∧ βb] − 2κ2εabcde
c ∧ sd = 0

∇ea + 16πl2pκ2sa = 0

Bab − 1
16πl2p

εabcde
c ∧ ed = 0

As in the case without matter ∇Bab = − 1
8πl2p

εabcd(ec ∧∇ed)

2 εabcdec ∧
(

1
16πl2p

∇ed + κ2s
d

)
+ e[a ∧ βb] = 0 .

This equaton gives e[a ∧ βb] = 0, such that βa = 0.
Total action SGR + SG + SF gives equations of motion:

(∇αFαβ)I = igjβI

Rσρ − 1
2
gσρR = 8πl2p

(
− 1

4g
(
F I
µνF

µν
I gρσ + 4F σνI F I

ν
ρ)

+
i

2
ψ̄(γσ

↔
∇
ρ

− γa
↔
∇ag

σρ − 2imgσρ)ψ

)
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Total action

S =

∫ [
Bâ ∧ F â + eα̂ ∧ Gα̂ + DÂ ∧H

Â

+ λâ ∧ (Bâ − Câ
b̂Mb̂cd

ec ∧ ed) + λÂ ∧ (γÂ − ea ∧ eb ∧ ecCÂ
B̂Mabc B̂)

+ ζâ
cd(M â

cdεijkle
i ∧ e j ∧ ek ∧ e l − F â ∧ ec ∧ ed) + ζabÂ ∧ (Mabc

Âεcdef ed ∧ ee ∧ ef − F Â ∧ ea ∧ eb)

− εijkle i ∧ e j ∧ ek ∧ e l(DÂC
Â
B̂M

B̂
ĈD

Ĉ + iκ2εabcde
a ∧ eb ∧ βc ψ̄γ5γ

dψ

]
,

where:
Bâ =

[
Bab BI

]
, Fâ =

[
Rab FI

]
, DÂ =

[
φ ψα̃ ψ̄α̃

]
, HÂ =

[
dγ (γ1

←
∇)α̃ −(

→
∇γ2)

α̃
]
,

γÂ =
[
γ γ1α̃ γ2

α̃
]
, λâ =

[
−λab λI

]
, Mâcd =

[
εabcd Mcd I

]
, ζâ

cd =
[
0 ζcd I

]
,

λÂ =
[
λ λ1α̃ −λ2α̃

]
, Mabc Â =

[
Mabc εabcd(ψ̄γd)α̃ εabcd(γdψ)α̃

]
, ζabÂ =

[
ζab 0 0

]
,

C â
b̂ =

[
G

α

]
, C Â

B̂ =

γ κ1
κ1

, M Â
B̂ =

 1
4!
mscal

mfer

mfer

.
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Conclusions

Overview of results:
The action for gravitation, gauge, scalar and Fermion fields
can be written as 3− BF action with constraints.
There is a part of the structure of 3-group that corresponds to
scalar and fermionic fields, i.e. there is a Lie group associated
to matter sector.

Topics for futher research:
Find a 3-group that produce needed matter section.
Quantization.
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