Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions

The action for scalar, Dirac and gauge field as 3 - BF action with constraints

Tijana Radenković Dr Marko Vojinović

Gravity and String Theory: New ideas for unsolved problems III (In honour of Prof. Branislav Sazdović's retirement)

September 7-9 2018, Zlatibor, Serbia.

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Outline					

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
The fund	amental	principle			

- Spacetime is a piecewise linear manifold it's not just a **regulatar**, but a **physical entity**.
- Field theory reconstructed only as an approximation, like in fluid mechanics.
- Nature has a **physical cutoff** there is a notion of the smallest possible lenght.
- The configuration integral is defined by discretization:

$$Z = \sum_{\{\phi\}} \prod_{\nu \in T} \mathcal{A}_{\nu}(\phi) \prod_{\epsilon \in T} \mathcal{A}_{\epsilon}(\phi) \cdots \prod_{\sigma \in T} \mathcal{A}_{\sigma}(\phi),$$

$\mathcal{T}(\mathcal{M}_D)$ triangulation of a manifold \mathcal{M}_D

- Finite number of degrees of freedom (in a finite volume): *D*-simplices are flat, curvature is obtained by non-trivial joining of simplices Regge calculus
- Every object is colored with φ fundamental variable, and amplitude A describing dynamics of φ.

 Introduction
 Gravity
 Gauge field
 Scalar field
 Fermionic field
 Conclusions

 Quantization procedure

- Quantization using state sums:
 - Rewrite the gravitational action as a sum of the topological part of the action and the residual part:

Gravity

topological part

$$S_{BFCG} = \int_{M} \left(B_{ab} \wedge R^{ab} + e_a \wedge
abla eta^a
ight)$$

topological part + constraint

$$S_{GR} = \int B_{ab} \wedge R^{ab} + e_a \wedge G^a - \phi^{ab} \wedge (B_{ab} - \frac{1}{16\pi l_p^2} \epsilon_{abcd} e^c \wedge e^d)$$

• Construct a state sum for the topological sector of the theory, using the topological quantum field theory formalism:

$$Z^{disc} = \int \left(\prod_{\epsilon} \mathrm{d}L_{\epsilon}\right) \sum_{\{\Lambda_{\Delta}\}} \sum_{\{I_{\tau}\}} W(L,\Lambda,I)$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Quantizat	ion proc	edure			

- This sum is a topological invariant independent of the triangulation.
- The integral measure is defined.
- Modification of the amplitudes in a certain way provides the transition from the topological state sum to the state sum corresponding to the complete theory.

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Category	theory				

- A *category* consists of the elements called *objects* and *morphisms* the mappings between these objects a *group* is then regarded as a category with only one object, where all morphisms are invertible.
- The 2-generalization of the notion of category a 2-*category* consists of: a collection of *objects*, *morphisms*, and 2-*morphisms* (2-*group*),
- 2-group is equivalent to a crossed-module $(G, H, \triangleright, \partial)$:
 - Lie group G elements of the group being morphisms and the group operation being composition of these morphisms,
 - Lie group *H* contains 2-morphisms whose source is the identity, where horizontal composition is the group operation,
 - horizontal conjugation of each element h ∈ H by the element g ∈ G, i.e. an action of group G on H ▷ : G → Aut(H)

• a group homomorphism that maps every 2-morphism in H to a target in G, $\partial: H \to G$:

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Poincaré 2	2-group				

- A crossed-module $(G, H, \triangleright, \partial)$, where:
 - G = SO(1,3),
 - $H = \mathbb{R}^4$,
 - Dash is a representation of the group G on H: $SO(1,3) \times \mathbb{R}^4 \to \mathbb{R}^4$,
 - ∂ is trivial, i.e. every object $h \in H$ is mapped to the identity element in $G: \mathbb{R}^4 \to 1_{SO(1,3)}$.
- Besides the connection $\mathfrak{so}(1,3)$ -albegra-valued 1-form $\omega \in \mathfrak{g}$, there is a 2-connection given by the pair (ω,β) , where $\beta \in \mathfrak{h}$ is an \mathbb{R}^4 -albegra-valued 2-form.
- Connections transforms under *G*-gauge transformations:

$$\omega \to g^{-1} \omega g + g^{-1} \mathrm{d}g, \quad \beta \to g^{-1} \triangleright \beta,$$

and under *H*-gauge transformations:

$$\omega \to \omega + \partial \eta \quad \text{i} \quad \beta \to \beta + d\eta + \omega \wedge^{\rhd} \eta + \eta \wedge \eta.$$

• We define holonomy g_l and 2-holonomy h_f :

$$g_l = \exp\left(\int_l \omega\right) \in G, \quad h_f = \exp\left(\int_f \beta\right) \in H.$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions			
<u> </u>								
Crovitati	<u>on</u>							
Ulavitati								
2 PE action with constraints								
2 - DF actio	n with constr	annis						

• Gravity is obtained as 2 - BF action with constraints:

$$S_{GR} = \int B_{ab} \wedge R^{ab} + e_a \wedge G^a - \phi^{ab} \wedge (B_{ab} - \frac{1}{16\pi l_p^2} \epsilon_{abcd} e^c \wedge e^d)$$

• Equations of motion ($B, e, \omega, \beta, \phi$):

$$R_{ab} - \phi_{ab} = 0 \tag{1}$$

$$\nabla \beta_{a} + \frac{1}{8\pi l_{\rho}^{2}} \epsilon_{abcd} \phi^{bc} \wedge e^{d} = 0$$
⁽²⁾

$$\nabla B_{ab} - e_{[a} \wedge \beta_{b]} = 0 \tag{3}$$

$$\nabla e_a = 0 \tag{4}$$

$$B_{ab} - \frac{1}{16\pi l_p^2} \epsilon_{abcd} e^c \wedge e^d \tag{5}$$

$$\Rightarrow \beta = 0$$
$$\Rightarrow \epsilon^{abcd} R_{bc} \wedge e^d = 0$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions

Gauge field

- Crossed-module $(G, H, \triangleright, \partial)$, where:
 - $G = SO(1,3) \times SU(N)$,
 - $H = \mathbb{R}^4$,
 - \triangleright is a representation of the group G on H,
 - ∂ is trivial: $\mathbb{R}^4 \to 1_{SO(1,3) \times SU(N)}$.
- Covariant derivative and curvature

$$\mathcal{F} = \mathrm{d}\omega + \omega \wedge \omega + \mathrm{d}A + A \wedge A$$

• Bilinear form $\langle, \rangle_{\mathfrak{g}}$ such that $B \wedge F = B_{ab} \wedge R^{ab} + B_I \wedge F^I$

$$\mathsf{S}_{M} = \int B_{I} \wedge F^{I} + \lambda^{I} \wedge (B_{I} - \alpha M_{abI} e^{a} \wedge e^{b}) + \zeta^{ab^{I}} (M_{abI} \epsilon_{ijkl} e^{i} \wedge e^{j} \wedge e^{k} \wedge e^{l} - g_{IJ} F^{J} \wedge e_{a} \wedge e_{b}),$$

$$\begin{split} \mathsf{M}_{abI} &= -\frac{1}{\alpha} \zeta_{abI} \\ \mathsf{B}_{I\alpha\beta} &= 2\alpha M_{abI} e^a_\alpha e^b_\beta \\ \zeta^{abI} &= \frac{e}{48} \alpha \epsilon^{\alpha\beta\gamma\delta} F^I_{\alpha\beta} e^\gamma_\gamma e^s_\delta \end{split}$$

Equations of motion:
•
$$-dB_I + B_A \wedge C^A{}_{JI}A^J + d(\zeta_I^{ab}e_a \wedge e_b) - \zeta_A^{ab}e_a \wedge e_b \wedge C^A{}_{JI}A^J = 0$$

• $\nabla \beta_a + \frac{1}{8\pi l_a^5} \epsilon_{abcd} \phi^{bc} \wedge e^d - 2\alpha M_{abI}\lambda^I \wedge e^b + 4\zeta^{rsI}M_{rsI}\epsilon_{ajkl}e^j \wedge e^k \wedge e^l - 2\zeta_{ab}^J F_I \wedge e^b = 0$

$$\frac{R^{\sigma\rho} - \frac{1}{2}g^{\sigma\rho}R = 8\pi l_{\rho}^{2} \left(-\frac{1}{4} \left(F_{\mu\nu}^{I} F_{I}^{\mu\nu} g^{\rho\sigma} + 4F_{I}^{\sigma\nu} F_{\nu}^{I} \right) \right)}{\left(\left(\nabla_{\rho} F^{\rho\alpha} \right)_{I} = 0 \right]}, \alpha = \frac{12}{g}$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions

Scalar field

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
3-group					

- 3-category consists of *objects*, *morphisms*, 2-*morphisms* and 3-*morphisms*.
- 3-group is equivalent to 2-crossed-module
 - Lie groups L, G and H,
 - group homomorphisms ∂ and δ :

$$L \xrightarrow{\delta} E \xrightarrow{\partial} G,$$

- an action \triangleright of the group G on groups L and E,
- *G*-eqiuvariant function $\{,\}: E \times E \to L$, that has certain properties.
- Lie algebra-valued differential forms $\omega \in \mathcal{A}^1(M, \mathfrak{g})$, $\beta \in \mathcal{A}^2(M, \mathfrak{e})$ and $\gamma \in \mathcal{A}^3(M, \mathfrak{l})$,
- 2-curvature 3-form (ω, β) : $\Omega = d\omega + \omega \wedge \omega$, curvature of ω , and $\Gamma = d\beta + \omega \wedge^{\triangleright} \beta$, covariant derivative of β ,
- 3-curvature 4-form (ω, β, γ) : $\Theta = d\gamma + \omega \wedge^{\triangleright} \gamma \beta \wedge^{\{,\}} \beta$.

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Scalar fie	eld				
Action and e	quations of m	notion			

• Action for scalar field

$$\begin{split} \mathcal{S}_{scalar} &= \int \phi \, \mathrm{d}B + \chi \wedge (B - \gamma \mathcal{H}_{abc} e^a \wedge e^b \wedge e^c) + \Lambda^{ab} \wedge (\mathcal{H}_{abc} \epsilon^{cdef} e_d \wedge e_e \wedge e_f - F \wedge e_a \wedge e_b) \\ &- \frac{1}{4!} \gamma m^2 \phi^2 \epsilon_{ijkl} e^i \wedge e^j \wedge e^k \wedge e^l \end{split}$$

- Equations of motion:
- $H_{abc} = \frac{1}{3!e} \epsilon_{\alpha\beta\gamma\delta} F^{\alpha} e^{\beta}_{a} e^{\gamma}_{b} e^{\delta}_{c}$
- $\chi = F$

•
$$\Lambda_{ab\alpha} = \frac{1}{3!e} \gamma \epsilon_{\alpha\beta\gamma\delta} F^{\beta} e^{\gamma}_{a} e^{\delta}_{b}$$

Equations for motion for ϕ and $e^{\rm a}$

• dB-d(
$$\Lambda^{ab} \wedge e_a \wedge e_b$$
) - $\frac{2}{4!} \gamma m^2 \phi \epsilon_{ijkl} e^i \wedge e^j \wedge e^k \wedge e^l = 0$

$$\begin{array}{l} \nabla\beta_{s}+\frac{1}{8\pi l_{p}^{2}}\epsilon_{sbcc}\phi^{bc}\wedge e^{d}+3\gamma H_{sbc}\wedge\wedge e^{b}\wedge e^{c}+3H^{ijk}\epsilon_{skbc}\Lambda_{ij}\wedge e^{b}\wedge e^{c}\\ \bullet\\ -2\Lambda_{sb}\wedge F\wedge e^{b}-4\frac{1}{4!}\gamma m^{2}\phi\epsilon_{sjkl}e^{i}\wedge e^{k}\wedge e^{l}= \end{array}$$

$$\boxed{\begin{array}{l} \left[\partial_{\alpha}(eF^{\alpha}) - em^{2}\phi = 0 \right]} \\ R^{\delta}{}_{\gamma} - \frac{1}{2}\delta^{\delta}{}_{\gamma}R = F_{\gamma}F^{\delta} - \delta^{\delta}_{\gamma}\frac{1}{2}\left(F_{\alpha}F^{\alpha} - m^{2}\phi^{2}\right) \end{array}}$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions

Fermionic field

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Fermions Action and equ	uations of m	notion			

• Action

$$S_{fermion} = \int \left(\psi^{\tilde{\alpha}} (\gamma_1 \overleftarrow{\nabla})_{\tilde{\alpha}} + \lambda_1^{\tilde{\alpha}} \wedge (\gamma_{1\tilde{\alpha}} - i\kappa_1 \epsilon_{abcd} e^a \wedge e^b \wedge e^c (\bar{\psi} \gamma^d)_{\tilde{\alpha}}) \right. \\ \left. - \bar{\psi}_{\tilde{\alpha}} (\overrightarrow{\nabla} \gamma_2)^{\tilde{\alpha}} - \lambda_{2\tilde{\alpha}} \wedge (\gamma_2^{\tilde{\alpha}} - i\kappa_1 \epsilon_{abcd} e^a \wedge e^b \wedge e^c (\gamma^d \psi)^{\tilde{\alpha}}) \right. \\ \left. + i\kappa_1 \epsilon_{abcd} e^a \wedge e^b \wedge e^c \wedge \bar{\psi} \frac{im}{2} e^d \psi \right) + i16\pi l_p^2 \kappa_2 \int \epsilon_{abcd} e^a \wedge e^b \wedge \beta^c \bar{\psi} \gamma_5 \gamma^d \psi.$$

• Equations of motion:

$$R^{\rho\sigma} - \frac{1}{2}g^{\rho\sigma}R = 8\pi I_{\rho}^{2} \left(\frac{i}{2}\bar{\psi}(\gamma^{\sigma} \nabla^{\leftrightarrow\rho} - \gamma^{a} \nabla_{a}g^{\sigma\rho} + 2img^{\sigma\rho})\psi\right)$$

$$(i\gamma^{\mu}\nabla_{\mu}-m)\psi=0$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Fermions					

• Equations of motion for ω_{ab} , β_{a} , ϕ_{ab} :

$$abla B_{ab} - e_{[a} \wedge eta_{b]} - 2\kappa_2 \epsilon_{abcd} e^c \wedge s^d = 0$$

$$\nabla e_a + 16\pi l_p^2 \kappa_2 s_a = 0$$

$$\mathsf{B}_{ab} - \frac{1}{16\pi l_p^2} \epsilon_{abcd} e^c \wedge e^d = 0$$

As in the case without matter $abla B^{ab} = -rac{1}{8\pi l_{
ho}^2}\epsilon^{abcd}(e_c\wedge
abla e_d)$

$$2\epsilon_{abcd}e^{c}\wedge\left(\frac{1}{16\pi l_{p}^{2}}\nabla e^{d}+\kappa_{2}s^{d}\right)+e_{[a}\wedge\beta_{b]}=0.$$

This equaton gives $e_{[a} \wedge \beta_{b]} = 0$, such that $\beta^{a} = 0$.

• Total action $S_{GR} + S_G + S_F$ gives equations of motion:

$$(
abla_{lpha}F^{lphaeta})_{I}=igj_{I}^{eta}$$

$$R^{\sigma\rho} - \frac{1}{2}g^{\sigma\rho}R = 8\pi l_{\rho}^{2} \left(-\frac{1}{4g} \left(F_{\mu\nu}^{I}F_{I}^{\mu\nu}g^{\rho\sigma} + 4F_{I}^{\sigma\nu}F_{\nu}^{I} \right) + \frac{i}{2}\tilde{\psi}(\gamma^{\sigma}\nabla^{\rho} - \gamma^{a}\nabla_{a}g^{\sigma\rho} - 2img^{\sigma\rho})\psi \right)$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Total act	ion				

$$\begin{split} S &= \int \left[B_{\hat{a}} \wedge \mathcal{F}^{\hat{s}} + e_{\hat{\alpha}} \wedge \mathcal{G}^{\hat{\alpha}} + D_{\hat{A}} \wedge \mathcal{H}^{\hat{A}} \\ &+ \lambda^{\hat{s}} \wedge (B_{\hat{s}} - C_{\hat{s}}^{\hat{b}} M_{\hat{b}_{cd}} e^{c} \wedge e^{d}) + \lambda^{\hat{A}} \wedge (\gamma_{\hat{A}} - e^{a} \wedge e^{b} \wedge e^{c} C_{\hat{A}}^{\hat{\beta}} M_{abc\,\hat{B}}) \\ &+ \zeta_{\hat{s}}^{cd} (M^{\hat{s}}_{cd} \epsilon_{ijkl} e^{i} \wedge e^{i} \wedge e^{k} \wedge e^{l} - F^{\hat{s}} \wedge e_{c} \wedge e_{d}) + \zeta^{ab}_{\hat{A}} \wedge (M_{abc}{}^{\hat{A}} e^{cdef} e_{d} \wedge e_{e} \wedge e_{f} - F^{\hat{A}} \wedge e_{a} \wedge e_{b}) \\ &- \epsilon_{ijkl} e^{i} \wedge e^{i} \wedge e^{k} \wedge e^{l} (D_{\hat{A}} C^{\hat{A}}{}_{\hat{B}} M^{\hat{B}}{}_{\hat{c}} D^{\hat{C}} + i\kappa_{2} \epsilon_{abcd} e^{a} \wedge e^{b} \wedge \beta^{c} \bar{\psi} \gamma_{5} \gamma^{d} \psi \right], \end{split}$$

where:

$$\begin{split} B_{\hat{s}} &= \begin{bmatrix} B_{ab} & B_{l} \end{bmatrix}, \quad \mathcal{F}_{\hat{s}} &= \begin{bmatrix} R_{ab} & F_{l} \end{bmatrix}, \quad D_{\hat{A}} &= \begin{bmatrix} \phi & \psi_{\tilde{\alpha}} & \bar{\psi}^{\tilde{\alpha}} \end{bmatrix}, \quad \mathcal{H}_{\hat{A}} &= \begin{bmatrix} d\gamma & (\gamma_{1} \overleftarrow{\nabla})_{\tilde{\alpha}} & -(\vec{\nabla}\gamma_{2})^{\tilde{\alpha}} \end{bmatrix}, \\ \gamma_{\hat{A}} &= \begin{bmatrix} \gamma & \gamma_{1\tilde{\alpha}} & \gamma_{2}^{\tilde{\alpha}} \end{bmatrix}, \quad \lambda_{\hat{s}} &= \begin{bmatrix} -\lambda_{ab} & \lambda_{l} \end{bmatrix}, \quad M_{\hat{s}_{cd}} &= \begin{bmatrix} \epsilon_{abcd} & M_{cd}_{l} \end{bmatrix}, \quad \zeta_{\hat{s}}^{cd} &= \begin{bmatrix} 0 & \zeta^{cd}_{l} \end{bmatrix}, \\ \lambda_{\hat{A}} &= \begin{bmatrix} \lambda & \lambda_{1\tilde{\alpha}} & -\lambda_{2}^{\tilde{\alpha}} \end{bmatrix}, \quad M_{abc_{\hat{A}}} &= \begin{bmatrix} M_{abc} & \epsilon_{abcd}(\bar{\psi}\gamma^{d})_{\tilde{\alpha}} & \epsilon_{abcd}(\gamma^{d}\psi)^{\tilde{\alpha}} \end{bmatrix}, \quad \zeta_{ab_{\hat{A}}} &= \begin{bmatrix} \zeta_{ab} & 0 & 0 \end{bmatrix}, \\ C^{\hat{s}}_{\ \hat{b}} &= \begin{bmatrix} G \\ & \alpha \end{bmatrix}, \quad C^{\hat{A}}_{\ \hat{B}} &= \begin{bmatrix} \gamma \\ & \kappa_{1} \\ & & \kappa_{1} \end{bmatrix}, \quad M^{\hat{A}}_{\ \hat{B}} &= \begin{bmatrix} \frac{1}{4!} m_{scal} \\ & & m_{fer} \end{bmatrix}. \end{split}$$

Introduction	Gravity	Gauge field	Scalar field	Fermionic field	Conclusions
Conclusior	าร				

- Overview of results:
 - The action for gravitation, gauge, scalar and Fermion fields can be written as 3 BF action with constraints.
 - There is a part of the structure of 3-group that corresponds to scalar and fermionic fields, i.e. there is a Lie group associated to matter sector.
- Topics for futher research:
 - Find a 3-group that produce needed matter section.
 - Quantization.

Thank you!

(:)