Noncommutative field theory from angular twist

 GST: NEW IDEAS FOR UNSOLVED PROBLEMS IIINikola Konjik (Faculty of Physics)
7-9 September 2018
M. Dimitrijević Ćirić, N.K, A. Samsarov, Noncommutative scalar quasinormal modes of the Reissner-Nordström black hole Class.Quant.Grav, 35 (2018) no.17, 175005
M. Dimitrifević Ćrić, N.K, M.Kurkov, F. Lizzi, P. Vitale, Noncommutative field theory from angular twist arXiv: 1806.06678

Content

(1) Introduction
(2) Twist formalism
(3) Angular noncommutativity
(4) Scalar field theory
(5) Particle decay
(6) Conclusion

Introduction to noncommutative geometry (NC)

- Local coordinates x^{μ} are replaced by the hermitean operators \hat{x}^{μ}

Introduction to noncommutative geometry (NC)

- Local coordinates x^{μ} are replaced by the hermitean operators \hat{x}^{μ}
- Algebra of the operators $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$

Introduction to noncommutative geometry (NC)

- Local coordinates x^{μ} are replaced by the hermitean operators \hat{x}^{μ}
- Algebra of the operators $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$

Introduction to noncommutative geometry (NC)

- Local coordinates x^{μ} are replaced by the hermitean operators \hat{x}^{μ}
- Algebra of the operators $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$
- The notion of a point loses its meaning \Rightarrow we describe NC space with NC algebra of functions (following the work of Gelfand and Naimark) [J. Wess et al.]

Introduction to noncommutative geometry (NC)

- Local coordinates x^{μ} are replaced by the hermitean operators \hat{x}^{μ}
- Algebra of the operators $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$
- The notion of a point loses its meaning \Rightarrow we describe NC space with NC algebra of functions (following the work of Gelfand and Naimark) [J. Wess et al.]

Approaches to NC geometry : *-product, NC spectral triplet, NC vielbien formalism, matrix models,...
*-product

- $(\hat{\mathcal{A}}, \cdot) \rightarrow(\mathcal{A}, \star)$

*-product

- $(\hat{\mathcal{A}}, \cdot) \rightarrow(\mathcal{A}, \star)$
- Most used \star-product is Moyal-Weyl

$$
(f \star g)(x)=\left.\exp \left(i \frac{\theta^{\mu \nu}}{2} \frac{\partial}{\partial^{y^{\mu}}} \frac{\partial}{\partial^{z^{\nu}}}\right) f(y) g(z)\right|_{y, z \rightarrow x}
$$

*-product

- $(\hat{\mathcal{A}}, \cdot) \rightarrow(\mathcal{A}, \star)$
- Most used \star-product is Moyal-Weyl

$$
(f \star g)(x)=\left.\exp \left(i \frac{\theta^{\mu \nu}}{2} \frac{\partial}{\partial y^{\mu}} \frac{\partial}{\partial^{z^{\nu}}}\right) f(y) g(z)\right|_{y, z \rightarrow x}
$$

- It gives commutation relations between coordinates

$$
\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}
$$

*-product

- $(\hat{\mathcal{A}}, \cdot) \rightarrow(\mathcal{A}, \star)$
- Most used \star-product is Moyal-Weyl

$$
(f \star g)(x)=\left.\exp \left(i \frac{\theta^{\mu \nu}}{2} \frac{\partial}{\partial y^{\mu}} \frac{\partial}{\partial^{z^{\nu}}}\right) f(y) g(z)\right|_{y, z \rightarrow x}
$$

- It gives commutation relations between coordinates

$$
\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}
$$

- One more important NC space-time is κ-Minkowski space-time [Lukierski et al, Dimitrijević and Jonke]

$$
\left[x^{0} \stackrel{\star}{,} x^{i}\right]=i a x^{i}
$$

and all other commutators are zero

Twist formalism

- A well defined way to deform symmetries (symm. alg. g with generators t^{a})
- Twist \mathcal{F} [Drienfeld, 85] is invertible operator which belongs to $U g \otimes U g$

Twist formalism

- A well defined way to deform symmetries (symm. alg. g with generators t^{a})
- Twist \mathcal{F} [Drienfeld, 85] is invertible operator which belongs to $U g \otimes U g$
- With twist, we deform Hopf algebra

$$
\begin{gathered}
{\left[t^{a}, t^{b}\right]=i f_{c}^{a b} t^{c}, \quad \Delta\left(t^{a}\right)=t^{a} \otimes 1+1 \otimes t^{a}} \\
\epsilon\left(t^{a}\right)=0, \quad S\left(t^{a}\right)=-t^{a}
\end{gathered}
$$

Twist formalism

- A well defined way to deform symmetries (symm. alg. g with generators t^{a})
- Twist \mathcal{F} [Drienfeld, 85] is invertible operator which belongs to $U g \otimes U g$
- With twist, we deform Hopf algebra

$$
\begin{gathered}
{\left[t^{a}, t^{b}\right]=i f_{c}^{a b} t^{c}, \quad \Delta\left(t^{a}\right)=t^{a} \otimes 1+1 \otimes t^{a}} \\
\epsilon\left(t^{a}\right)=0, \quad S\left(t^{a}\right)=-t^{a}
\end{gathered}
$$

- Abelian twist

$$
\mathcal{F}^{-1}=e^{i \theta^{A B} X_{A} \otimes X_{B}}
$$

where X_{A} and X_{B} are commuting vector fields and $\theta^{A B}$ is an antisymmetric constant matrix

- Deformation of differential calculus

$$
f \star g=\mu \mathcal{F}^{-1}(f \otimes g) \quad \omega_{1} \wedge_{\star} \omega_{2}=\wedge \mathcal{F}^{-1}\left(\omega_{1} \otimes \omega_{2}\right) .
$$

- Deformation of differential calculus

$$
f \star g=\mu \mathcal{F}^{-1}(f \otimes g) \quad \omega_{1} \wedge_{\star} \omega_{2}=\wedge \mathcal{F}^{-1}\left(\omega_{1} \otimes \omega_{2}\right)
$$

- Action of the vector field on the differential forms is given by the Lie derivative along that vector field $X_{A} \triangleright \omega=\ell_{X_{A}} \omega$
- Deformation of differential calculus

$$
f \star g=\mu \mathcal{F}^{-1}(f \otimes g) \quad \omega_{1} \wedge_{\star} \omega_{2}=\wedge \mathcal{F}^{-1}\left(\omega_{1} \otimes \omega_{2}\right) .
$$

- Action of the vector field on the differential forms is given by the Lie derivative along that vector field $X_{A} \triangleright \omega=\ell_{X_{A}} \omega$
- Twisted Hopf algebra is

$$
\begin{aligned}
{\left[t^{a}, t^{b}\right] } & =i f_{c}^{a b} t^{c} \\
\Delta_{\mathcal{F}}\left(t^{a}\right) & =\mathcal{F} \Delta\left(t^{a}\right) \mathcal{F}^{-1} \\
\epsilon\left(t^{a}\right) & =0, \quad S_{\mathcal{F}}\left(t^{a}\right)=\mathrm{f}^{\alpha} S\left(\mathrm{f}_{\alpha}\right) S\left(t^{a}\right) S\left(\overline{\mathrm{f}}^{\beta}\right) \mathrm{f}_{\beta}
\end{aligned}
$$

where is

$$
\mathcal{F}=\mathrm{f}^{\alpha} \otimes \mathrm{f}_{\alpha}, \quad \mathcal{F}^{-1}=\overline{\mathrm{f}}^{\alpha} \otimes \overline{\mathrm{f}}_{\alpha}
$$

Angular twist

- First time introduced in [M.D.Ć, N.K, A.S, CQG 2018.] and calculated EOM for the scalar field in RN geometry for the quasinormal modes boundary conditions

Angular twist

- First time introduced in [M.D.Ć, N.K, A.S, CQG 2018.] and calculated EOM for the scalar field in RN geometry for the quasinormal modes boundary conditions
- Angular twist

$$
\mathcal{F}=e^{-\frac{i a}{2}\left(\partial_{z} \otimes\left(x \partial_{y}-y \partial_{x}\right)-\left(x \partial_{y}-y \partial_{x}\right) \otimes \partial_{z}\right)}=e^{-\frac{i a}{2}\left(\partial_{z} \otimes \partial_{\varphi}-\partial_{\varphi} \otimes \partial_{z}\right)}
$$

gives commutation relations between coordinates

$$
\left[z^{\star}, x\right]=-i a y, \quad\left[z^{\star}, y\right]=i a x .
$$

or

$$
[z, \stackrel{\star}{,} \varphi]=i a \text { or }\left[z^{\star}, e^{i \varphi}\right]=i a e^{i \varphi}
$$

Angular twist

- First time introduced in [M.D.Ć, N.K, A.S, CQG 2018.] and calculated EOM for the scalar field in RN geometry for the quasinormal modes boundary conditions
- Angular twist

$$
\mathcal{F}=e^{-\frac{i a}{2}\left(\partial_{z} \otimes\left(x \partial_{y}-y \partial_{x}\right)-\left(x \partial_{y}-y \partial_{x}\right) \otimes \partial_{z}\right)}=e^{-\frac{i \theta}{2}\left(\partial_{z} \otimes \partial_{\varphi}-\partial_{\varphi} \otimes \partial_{z}\right)},
$$

gives commutation relations between coordinates

$$
\left[z^{\star}, x\right]=-i a y, \quad\left[z^{\star}, y\right]=i a x .
$$

or

$$
[z, \stackrel{\star}{,} \varphi]=i a \text { or }\left[z^{\star}, e^{i \varphi}\right]=i a e^{i \varphi}
$$

- Twist similar to $\kappa-$ Minkowski $\left[t,{ }_{,}^{\star} x^{i}\right]=i a x^{i}$ but more simpler

Angular twist

- First time introduced in [M.D.Ć, N.K, A.S, CQG 2018.] and calculated EOM for the scalar field in RN geometry for the quasinormal modes boundary conditions
- Angular twist

$$
\mathcal{F}=e^{-\frac{i a}{2}\left(\partial_{z} \otimes\left(x \partial_{y}-y \partial_{x}\right)-\left(x \partial_{y}-y \partial_{x}\right) \otimes \partial_{z}\right)}=e^{-\frac{i a}{2}\left(\partial_{z} \otimes \partial_{\varphi}-\partial_{\varphi} \otimes \partial_{z}\right)},
$$

gives commutation relations between coordinates

$$
\left[z^{\star}, x\right]=-i a y, \quad\left[z^{\star}, y\right]=i a x .
$$

or

$$
[z, \stackrel{\star}{,} \varphi]=i a \text { or }\left[z^{\star}, e^{i \varphi}\right]=i a e^{i \varphi}
$$

- Twist similar to κ - Minkowski $\left[t,{ }_{,}^{\star} x^{i}\right]=i a x^{i}$ but more simpler
- Vector fields in the angular twist are Poincare generatore, while in the κ - Minkowski we have dilatation generator

Angular noncommutativity

- Product of two plane waves is

$$
e^{-i p \cdot x} \star e^{-i q \cdot x}=e^{-i(p+\star q) \cdot x}
$$

where is $p+_{\star} q=R\left(q_{3}\right) p+R\left(-p_{3}\right) q$ and

$$
R(t) \equiv\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(\frac{a t}{2}\right) & \sin \left(\frac{a t}{2}\right) & 0 \\
0 & -\sin \left(\frac{a t}{2}\right) & \cos \left(\frac{a t}{2}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Angular noncommutativity

- $e^{-i p \cdot x} \star e^{-i q \cdot x} \star e^{-i r \cdot x}=e^{-i(p+\star q+\star r) \cdot x}$ gives

$$
p+_{\star} q+_{\star} r=R\left(r_{3}+q_{3}\right) p+R\left(-p_{3}+r_{3}\right) q+R\left(-p_{3}-q_{3}\right) r
$$

Angular noncommutativity

- $e^{-i p \cdot x} \star e^{-i q \cdot x} \star e^{-i r \cdot x}=e^{-i(p+\star q+\star r) \cdot x}$ gives

$$
p+_{\star} q+_{\star} r=R\left(r_{3}+q_{3}\right) p+R\left(-p_{3}+r_{3}\right) q+R\left(-p_{3}-q_{3}\right) r
$$

- General case

$$
p^{(1)}+_{\star} \ldots+_{\star} p^{(N)}=\sum_{j=1}^{N} R\left(-\sum_{1 \leq k<j} p_{3}^{(k)}+\sum_{j<k \leq N} p_{3}^{(k)}\right) p^{(j)}
$$

- Conservation of momentum is broken!

Deformation of the coproduct of translation generators

- Coproducts for P_{0} and P_{3} are undeformed

Deformation of the coproduct of translation generators

- Coproducts for P_{0} and P_{3} are undeformed
- $\Delta^{\mathcal{F}} P_{1}=$

$$
P_{1} \otimes \cos \left(\frac{a}{2} P_{3}\right)+\cos \left(\frac{a}{2} P_{3}\right) \otimes P_{1}+P_{2} \otimes \sin \left(\frac{a}{2} P_{3}\right)-\sin \left(\frac{a}{2} P_{3}\right) \otimes P_{2}
$$

Deformation of the coproduct of translation generators

- Coproducts for P_{0} and P_{3} are undeformed
- $\Delta^{\mathcal{F}} P_{1}=$
$P_{1} \otimes \cos \left(\frac{a}{2} P_{3}\right)+\cos \left(\frac{a}{2} P_{3}\right) \otimes P_{1}+P_{2} \otimes \sin \left(\frac{a}{2} P_{3}\right)-\sin \left(\frac{a}{2} P_{3}\right) \otimes P_{2}$
- $\Delta^{\mathcal{F}} P_{2}=$
$P_{2} \otimes \cos \left(\frac{a}{2} P_{3}\right)+\cos \left(\frac{a}{2} P_{3}\right) \otimes P_{2}-P_{1} \otimes \sin \left(\frac{a}{2} P_{3}\right)+\sin \left(\frac{a}{2} P_{3}\right) \otimes P_{1}$

Deformation of the coproduct of translation generators

- Coproducts for P_{0} and P_{3} are undeformed
- $\Delta^{\mathcal{F}} P_{1}=$
$P_{1} \otimes \cos \left(\frac{a}{2} P_{3}\right)+\cos \left(\frac{a}{2} P_{3}\right) \otimes P_{1}+P_{2} \otimes \sin \left(\frac{a}{2} P_{3}\right)-\sin \left(\frac{a}{2} P_{3}\right) \otimes P_{2}$
- $\Delta^{\mathcal{F}} P_{2}=$
$P_{2} \otimes \cos \left(\frac{a}{2} P_{3}\right)+\cos \left(\frac{a}{2} P_{3}\right) \otimes P_{2}-P_{1} \otimes \sin \left(\frac{a}{2} P_{3}\right)+\sin \left(\frac{a}{2} P_{3}\right) \otimes P_{1}$
- Suppose that a field (or a state) ϕ_{p} is an eigenvector of the momentum operator P_{μ} with the eigenvalue $p_{\mu}: P_{\mu} \phi_{p}=p_{\mu} \phi_{p}$
- Then $P_{\mu}\left(\phi_{p} \star \phi_{q}\right)=\mu_{\star}\left\{\Delta^{\mathcal{F}} P_{\mu}\left(\phi_{p} \otimes \phi_{q}\right)\right\}=\left(p+_{\star} q\right)\left(\phi_{p} \star \phi_{q}\right)$

Scalar field theory

$$
S[\phi]=\int_{R^{4}} d^{4} x\left(\frac{1}{2} \partial_{\mu} \phi(x) \star \partial^{\mu} \phi(x)+\frac{1}{2} m^{2} \phi(x) \star \phi(x)+\frac{\lambda}{4!} \phi(x)^{\star 4}\right)
$$

Scalar field theory

$$
S[\phi]=\int_{R^{4}} d^{4} x\left(\frac{1}{2} \partial_{\mu} \phi(x) \star \partial^{\mu} \phi(x)+\frac{1}{2} m^{2} \phi(x) \star \phi(x)+\frac{\lambda}{4!} \phi(x)^{\star 4}\right)
$$

In momentum space, action has the form

$$
\begin{aligned}
& S[\phi]=\int_{R^{4} \times R^{4}} d p d q \frac{1}{2}\left(-p_{\mu} q^{\mu} \widetilde{\phi}(p) \widetilde{\phi}(q)+m^{2} \widetilde{\phi}(p) \widetilde{\phi}(q)\right) \delta^{(4)}\left(p+_{\star} q\right) \\
& +\frac{1}{(2 \pi)^{4} \frac{\lambda}{4!}} \int_{\left(R^{4}\right)^{\times 4}} d p d q d r d s \widetilde{\phi}(p) \widetilde{\phi}(q) \widetilde{\phi}(r) \widetilde{\phi}(s) \delta^{(4)}\left(p+_{\star} q+_{\star} r+_{\star} s\right)
\end{aligned}
$$

Scalar field theory

All NC corrections are in the delta function with 4 terms because

$$
\delta^{(4)}\left(p+_{\star} q\right)=\delta^{(4)}\left(R\left(q_{3}\right) p+R\left(-p_{3}\right) q\right)=\delta^{(4)}\left(R\left(q_{3}\right)(p+q)\right)=\delta^{(4)}(p+q)
$$

Scalar field theory

All NC corrections are in the delta function with 4 terms because
$\delta^{(4)}\left(p+_{\star} q\right)=\delta^{(4)}\left(R\left(q_{3}\right) p+R\left(-p_{3}\right) q\right)=\delta^{(4)}\left(R\left(q_{3}\right)(p+q)\right)=\delta^{(4)}(p+q)$

We have two types of the diagrams; planar and non-planar (depends on how we contracted momenta)

Scalar field theory

All NC corrections are in the delta function with 4 terms because
$\delta^{(4)}\left(p+_{\star} q\right)=\delta^{(4)}\left(R\left(q_{3}\right) p+R\left(-p_{3}\right) q\right)=\delta^{(4)}\left(R\left(q_{3}\right)(p+q)\right)=\delta^{(4)}(p+q)$

We have two types of the diagrams; planar and non-planar (depends on how we contracted momenta)
Planar diagrams are the same as in commutative case

Scalar field theory

All NC corrections are in the delta function with 4 terms because
$\delta^{(4)}\left(p+_{\star} q\right)=\delta^{(4)}\left(R\left(q_{3}\right) p+R\left(-p_{3}\right) q\right)=\delta^{(4)}\left(R\left(q_{3}\right)(p+q)\right)=\delta^{(4)}(p+q)$

We have two types of the diagrams; planar and non-planar (depends on how we contracted momenta)
Planar diagrams are the same as in commutative case NC corections are just in non-planar diagrams

(a)

(b)

(a)

(b)

Value of the UV divergent part of the planar diagram

$$
\operatorname{Pl}(\mathrm{a})=\frac{1}{q^{2}+m^{2}} \cdot \frac{1}{s^{2}+m^{2}} \cdot \delta^{(4)}(q-s) \pi^{2}\left(\Lambda^{2}-m^{2} \log \frac{\Lambda}{\mu}\right)
$$

(a)

(b)

Value of the UV divergent part of the planar diagram

$$
\operatorname{Pl}(\mathrm{a})=\frac{1}{q^{2}+m^{2}} \cdot \frac{1}{s^{2}+m^{2}} \cdot \delta^{(4)}(q-s) \pi^{2}\left(\Lambda^{2}-m^{2} \log \frac{\Lambda}{\mu}\right)
$$

Value of the UV divergent part of the non-planar diagram

$$
\mathrm{NPI}(\mathrm{~b})=\frac{1}{q^{2}+m^{2}} \frac{1}{s^{2}+m^{2}} \delta\left(q_{0}-s_{0}\right) \delta\left(q_{3}-s_{3}\right) \frac{\pi^{2}}{2\left(\sin \left(\frac{a q_{3}}{2}\right)\right)^{2}} \ln \left(\frac{\Lambda}{\mu}\right)
$$

UV/IR mixing in the Moyal case

- Planar diagrams are without NC corrections

$$
\Gamma_{P I}=\frac{g^{2}}{96 \pi^{2}}\left(\Lambda^{2}-m^{2} \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

UV/IR mixing in the Moyal case

- Planar diagrams are without NC corrections

$$
\Gamma_{P I}=\frac{g^{2}}{96 \pi^{2}}\left(\Lambda^{2}-m^{2} \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

- Non-planar diagrams have NC corrections [Minwala et al, 99]

$$
\Gamma_{N P I}=\frac{g^{2}}{48 \pi^{2}}\left(\Lambda_{\text {eff }}^{2}-m^{2} \ln \left(\frac{\Lambda_{e f f}^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

where is $\Lambda_{\text {eff }}^{2}=\frac{1}{\frac{1}{\Lambda^{2}}-p \circ p}$ and $p \circ p=\left|p_{\mu} \theta_{\mu \nu}^{2} p_{\nu}\right|$

UV/IR mixing in the Moyal case

- Planar diagrams are without NC corrections

$$
\Gamma_{P I}=\frac{g^{2}}{96 \pi^{2}}\left(\Lambda^{2}-m^{2} \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

- Non-planar diagrams have NC corrections [Minwala et al, 99]

$$
\Gamma_{N P I}=\frac{g^{2}}{48 \pi^{2}}\left(\Lambda_{e f f}^{2}-m^{2} \ln \left(\frac{\Lambda_{e f f}^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

where is $\Lambda_{\text {eff }}^{2}=\frac{1}{\frac{1}{\Lambda^{2}}-p \circ p}$ and $p \circ p=\left|p_{\mu} \theta_{\mu \nu}^{2} p_{\nu}\right|$

- For $p \circ p=$ finite the NPI diagram is finite

UV/IR mixing in the Moyal case

- Planar diagrams are without NC corrections

$$
\Gamma_{P I}=\frac{g^{2}}{96 \pi^{2}}\left(\Lambda^{2}-m^{2} \ln \left(\frac{\Lambda^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

- Non-planar diagrams have NC corrections [Minwala et al, 99]

$$
\Gamma_{N P I}=\frac{g^{2}}{48 \pi^{2}}\left(\Lambda_{e f f}^{2}-m^{2} \ln \left(\frac{\Lambda_{e f f}^{2}}{m^{2}}\right)+\text { fin. part }\right)
$$

where is $\Lambda_{\text {eff }}^{2}=\frac{1}{\frac{1}{\Lambda^{2}}-p \circ p}$ and $p \circ p=\left|p_{\mu} \theta_{\mu \nu}^{2} p_{\nu}\right|$

- For $p \circ p=$ finite the NPI diagram is finite
- The NPI diagram is divergent for $p \rightarrow 0$ (UV/IR mixing) or for $\theta \rightarrow 0$

UV/IR mixing in the angular case

- NC reduces the degree of divergency from quadratic to logarhitmic

UV/IR mixing in the angular case

- NC reduces the degree of divergency from quadratic to logarhitmic
- Lost smooth limit from NC to commutative case

UV/IR mixing in the angular case

- NC reduces the degree of divergency from quadratic to logarhitmic
- Lost smooth limit from NC to commutative case
- Presence of some unusual UV/IR mixing

UV/IR mixing in the angular case

- NC reduces the degree of divergency from quadratic to logarhitmic
- Lost smooth limit from NC to commutative case
- Presence of some unusual UV/IR mixing
- In 3D we have finite non-planar diagrams

Particle decay

- Application of the \star-sum of momenta to the kinematics of particles decay

Particle decay

- Application of the \star-sum of momenta to the kinematics of particles decay
- Dispersion relation is undeformed because propagator is undeformed

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

and because Casimir operators are undeformed (twist does not change the algebra structure)

Particle decay

- Application of the \star-sum of momenta to the kinematics of particles decay
- Dispersion relation is undeformed because propagator is undeformed

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

and because Casimir operators are undeformed (twist does not change the algebra structure)

- For this chapter, we will change type of NC: we will change z-coordinate with time coordinate

Particle decay

- Application of the \star-sum of momenta to the kinematics of particles decay
- Dispersion relation is undeformed because propagator is undeformed

$$
E^{2}=\vec{p}^{2}+m^{2}
$$

and because Casimir operators are undeformed (twist does not change the algebra structure)

- For this chapter, we will change type of NC: we will change z-coordinate with time coordinate
- We will look at kinematically decay of one particle in the rest to the two other particles. Momentum law conservation is

$$
p+_{\star}(-q)+_{\star}(-r)=a\left(-q_{0}-r_{0}\right) \cdot p-a\left(-p_{0}-r_{0}\right) \cdot q-a\left(-p_{0}+q_{0}\right) \cdot r
$$

Particle decay

- These four equations are

$$
\begin{gathered}
M=E_{q}+E_{r} \\
0=q_{z}+r_{z} \\
0=\cos \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{x}-\sin \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{y}+\cos \left(\frac{a E_{r}}{2}\right) r_{x}-\sin \left(\frac{a E_{r}}{2}\right) r_{y} \\
0=\cos \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{y}+\sin \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{x}+\cos \left(\frac{a E_{r}}{2}\right) r_{y}+\sin \left(\frac{a E_{r}}{2}\right) r_{x}
\end{gathered}
$$

Particle decay

- These four equations are

$$
\begin{gathered}
M=E_{q}+E_{r} \\
0=q_{z}+r_{z} \\
0=\cos \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{x}-\sin \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{y}+\cos \left(\frac{a E_{r}}{2}\right) r_{x}-\sin \left(\frac{a E_{r}}{2}\right) r_{y} \\
0=\cos \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{y}+\sin \left(\frac{a}{2}\left(M+E_{r}\right)\right) q_{x}+\cos \left(\frac{a E_{r}}{2}\right) r_{y}+\sin \left(\frac{a E_{r}}{2}\right) r_{x}
\end{gathered}
$$

- NC effects are obviousy in the xy-plane
- Equations for x and y plane gives

$$
0=R\left(\frac{a E_{r}}{2}\right) R\left(\frac{a M}{2}\right) \vec{q}_{x y}+R\left(\frac{a E_{r}}{2}\right) \vec{r}_{x y}=R\left(\frac{a M}{2}\right) \vec{q}_{x y}+\vec{r}_{x y}
$$

$\vec{q}_{x y}$-projection of the momentum on the xy-plane
R-rotational matrix which rotate one of the opposite momenta for angle $\frac{a M}{2}$

Example: $Z^{0} \rightarrow \mu^{+}+\mu^{-}$

$$
\begin{aligned}
& M(Z) \approx 90 \mathrm{GeV} m(\mu) \approx 105 \mathrm{MeV}\left|\vec{p}_{\mu^{+}}\right|=\left|\vec{p}_{\mu^{-}}\right| \approx 45 \mathrm{GeV} \\
& \angle\left(\vec{p}_{\mu^{-}}, \vec{p}_{\mu^{+}}\right)=\pi-\frac{a M}{2} \\
& a \sim(10 \mathrm{TeV})^{-1} \Rightarrow \frac{a M}{2} \sim 5 \cdot 10^{-3} \text { and } \\
& a \sim(100 \mathrm{TeV})^{-1} \Rightarrow \frac{a M}{2} \sim 5 \cdot 10^{-4}
\end{aligned}
$$

- Equations for x and y plane gives

$$
0=R\left(\frac{a E_{r}}{2}\right) R\left(\frac{a M}{2}\right) \vec{q}_{x y}+R\left(\frac{a E_{r}}{2}\right) \vec{r}_{x y}=R\left(\frac{a M}{2}\right) \vec{q}_{x y}+\vec{r}_{x y}
$$

$\vec{q}_{x y}$-projection of the momentum on the xy-plane R-rotational matrix which rotate one of the opposite momenta for angle $\frac{a M}{2}$

- Boosts will change angle between particles: different angles from different reference systems

Example: $Z^{0} \rightarrow \mu^{+}+\mu^{-}$

$$
\begin{aligned}
& M(Z) \approx 90 \mathrm{GeV} m(\mu) \approx 105 \mathrm{MeV}\left|\vec{p}_{\mu^{+}}\right|=\left|\vec{p}_{\mu^{-}}\right| \approx 45 \mathrm{GeV} \\
& \angle\left(\vec{p}_{\mu^{-}}, \vec{p}_{\mu^{+}}\right)=\pi-\frac{a M}{2} \\
& a \sim(10 \mathrm{TeV})^{-1} \Rightarrow \frac{a M}{2} \sim 5 \cdot 10^{-3} \text { and } \\
& a \sim(100 \mathrm{TeV})^{-1} \Rightarrow \frac{a M}{2} \sim 5 \cdot 10^{-4}
\end{aligned}
$$

Conclusion

- Simple Lie algebra NC

Conclusion

- Simple Lie algebra NC
- Connection between deformed Hopf algebra and \star-sums

Conclusion

- Simple Lie algebra NC
- Connection between deformed Hopf algebra and \star-sums
- Momentum and boost conservation laws broken

Conclusion

- Simple Lie algebra NC
- Connection between deformed Hopf algebra and \star-sums
- Momentum and boost conservation laws broken
- UV/IC "mixing"

Conclusion

- Simple Lie algebra NC
- Connection between deformed Hopf algebra and \star-sums
- Momentum and boost conservation laws broken
- UV/IC "mixing"
- Phenomenological aspects of particle decay

Conclusion

- Simple Lie algebra NC
- Connection between deformed Hopf algebra and \star-sums
- Momentum and boost conservation laws broken
- UV/IC "mixing"
- Phenomenological aspects of particle decay
- Future work: better understanding of the connection between deformed conservation laws and deformed Hopf algebra, spectrum of QNMs with some numerical methods

