Courant and Roytenberg bracket and their relations to the current algebra in bosonic string theory

Ilija Ivanišević
07.09.2018

Overview

1. Introduction
2. T-duality
3. General currents and their charges algebra
4. Courant and Roytenberg bracket

Action

$$
S[x]=\kappa \int_{\Sigma} d^{2} \xi\left[\frac{1}{2} \eta^{\alpha \beta} G_{\mu \nu}[x]+\epsilon^{\alpha \beta} B_{\mu \nu}[x]\right] \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu}
$$

- bosonic string in the coordinate dependant background
- string is propagating in $\mathrm{D}=26$ dimensions
- worldsheet is parametrized with one time-like $\left(\xi_{0}=\tau\right)$ and one space-like $\left(\xi_{1}=\sigma\right)$ parameter

$$
\begin{gathered}
S[x]=\kappa \int_{\Sigma} d^{2} \xi \partial_{+} x^{\mu} \Pi_{+\mu \nu}[x] \partial_{-} x^{\nu}, \quad \Pi_{ \pm \mu \nu}[x]=B_{\mu \nu}[x] \pm \frac{1}{2} G_{\mu \nu}[x] \\
\Theta_{ \pm}^{\mu \nu}=\theta^{\mu \nu} \mp \frac{1}{\kappa}\left(G_{E}^{-1}\right)^{\mu \nu}
\end{gathered}
$$

T-duality

- T-duality is an equivalence of two seemingly different physical theories in a way that all observable quantities in one theory are identified with quantities in its dual theory
- T-duality connects different superstring theories: two flavors of heterotic string theory $\left(\mathrm{SO}(32)\right.$ and $\left.E_{8} \times E_{8}\right)$ and theories of type IIa and IIb
- T-duality is used in a construction of equivalent Calabi-Yau manifolds.

Example: Closed string in the background with one dimension compactified on the radius R

- $M^{2}=\frac{K^{2}}{R^{2}}+W^{2} \frac{R^{2}}{\alpha^{\prime 2}}$
- Spectrum doesn't change under the simultaneous transformations $K \leftrightarrow W$ and $R \leftrightarrow \frac{\alpha^{\prime}}{R}$
- Momenta in one theory are winding numbers in its T-dual theory and vice versa

Construction of the T-dual theory of sigma model

- Buscher procedure
- at least one Abelian isometry is required
- isometry is gauged by introducing the gauge fields
- gauge fields should not carry the additional degrees of freedom
- Generalized Buscher procedure
- constructed for certain coordinate-dependant background fields
- invariant coordinate as the line integral of the covariant derivatives of the original coordinates

Action:

$$
\star S[y]=\kappa \int d^{2} \xi \partial_{+} y_{\mu}{ }^{\star} \Pi_{+}^{\mu \nu}(\Delta V(y)) \partial_{-} y_{\nu}
$$

Currents in the original theory

- Hamiltonian as a function of some currents $j_{ \pm \mu}$:

$$
\begin{gathered}
H=\frac{1}{4 \kappa} j_{-\mu}\left(G^{-1}\right)^{\mu \nu} j_{-\nu}+\frac{1}{4 \kappa} j_{+\mu}\left(G^{-1}\right)^{\mu \nu} j_{+\nu} \\
j_{ \pm \mu}=\pi_{\mu}+2 \kappa \Pi_{ \pm \mu \nu} x^{\prime \nu}
\end{gathered}
$$

- Currents can be rewritten in the following form:

$$
j_{ \pm \mu}=i_{\mu} \pm \kappa G_{\mu \nu} x^{\prime \nu}, \quad i_{\mu}=\pi_{\mu}+2 \kappa B_{\mu \nu} x^{\prime \nu}
$$

Currents in the T-dual theory

- Hamiltonian as a function of currents ${ }^{\star} k_{ \pm}^{\mu}$ in dual theory:

$$
\begin{gathered}
\star H=\frac{1}{4 \kappa} \star k_{-}^{\mu} G_{\mu \nu}^{E}{ }^{\star} k_{-}^{\nu}+\frac{1}{4 \kappa}{ }^{\star} k_{+}^{\mu} G_{\mu \nu}^{E}{ }^{\star} k_{+}^{\nu} \\
\star k_{ \pm}^{\mu}={ }^{\star} \pi^{\mu}+2^{\star} \Pi_{ \pm}^{\mu \nu} y_{\nu}^{\prime}
\end{gathered}
$$

- Currents can be rewritten in the following form:

$$
{ }^{\star} k_{ \pm}^{\mu}={ }^{\star} \rho^{\mu} \pm\left(G_{E}^{-1}\right)^{\mu \nu} y_{\nu}^{\prime}, \quad \star f^{\mu}={ }^{\star} \pi^{\mu}+2^{\star} B^{\mu \nu} y_{\nu}^{\prime}
$$

- They satisfy the following relations:

$$
\begin{align*}
& \star k_{ \pm}^{\mu} \cong I^{\mu} \pm \kappa x^{\prime \mu}+\kappa \theta_{\mp}^{\mu \nu} \pi_{\nu}=I^{\mu} \pm \frac{1}{\kappa}\left(G_{E}^{-1}\right)^{\mu \nu} \pi_{\nu} \tag{1}\\
& \star I_{ \pm}^{\mu} \cong \kappa x^{\prime \mu}+\kappa \theta^{\mu \nu} \pi_{\nu}
\end{align*}
$$

General currents

The most general currents:

$$
\begin{aligned}
& J_{C(u, \alpha)}=u^{\mu}(x) i_{\mu}+\alpha_{\mu}(x) x^{\prime \mu} \\
& J_{R(u, \alpha)}=u^{\mu}(x) \pi_{\mu}+\alpha_{\mu}(x)^{\mu}
\end{aligned}
$$

Currents $j_{ \pm \mu}$ and $k_{ \pm}^{\mu}$ can be obtained with following transformations:

$$
\begin{aligned}
\alpha_{\mu} & \left.= \pm \kappa G_{\mu \nu} u^{\nu}, J_{C(u, \alpha}\right) \rightarrow u^{\mu} j_{ \pm \mu} \\
u^{\mu} & \left.= \pm \frac{1}{\kappa}\left(G_{E}^{-1}\right)^{\mu \nu} \alpha_{\nu}, J_{R(u, \alpha}\right) \rightarrow \alpha_{\mu} k_{ \pm}^{\mu}
\end{aligned}
$$

Current algebra

- Poisson brackets between the currents:

$$
\begin{aligned}
& \left\{i_{\mu}(\sigma), i_{\nu}\left(\sigma^{\prime}\right)\right\}=-2 \kappa B_{\mu \nu \rho} x^{\prime \rho} \delta\left(\sigma-\sigma^{\prime}\right) \\
& \left\{I^{\mu}(\sigma), I^{\nu}\left(\sigma^{\prime}\right)\right\}=-\kappa Q_{\rho}{ }^{\mu \nu} I^{\rho} \delta\left(\sigma-\sigma^{\prime}\right)-\kappa^{2} R^{\mu \nu \rho} \pi_{\rho} \delta\left(\sigma-\sigma^{\prime}\right)
\end{aligned}
$$

- Structure constants are given by

$$
\begin{aligned}
B_{\mu \nu \rho} & =\partial_{\mu} B_{\nu \rho}+\partial_{\nu} B_{\rho \mu}+\partial_{\rho} B_{\mu \nu} \\
Q_{\rho}{ }^{\mu \nu} & =\partial_{\rho} \theta^{\mu \nu} \\
R^{\mu \nu \rho} & =\theta^{\mu \sigma} \partial_{\sigma} \theta^{\nu \rho}+\theta^{\nu \sigma} \partial_{\sigma} \theta^{\rho \mu}+\theta^{\rho \sigma} \partial_{\sigma} \theta^{\mu \nu}
\end{aligned}
$$

Current algebra

Algebra between the most general currents:

$$
\begin{aligned}
& \left\{J_{C(u, \alpha)}(\sigma), J_{C(v, \beta)}\left(\sigma^{\prime}\right)\right\}=J_{C(w, \gamma)} \delta\left(\sigma-\sigma^{\prime}\right)+((u, \alpha),(v, \beta)) \delta^{\prime}\left(\sigma-\sigma^{\prime}\right) \\
& \quad w^{\mu}=\left(v^{\nu} \partial_{\nu} u^{\mu}-u^{\nu} \partial_{\nu} v^{\mu}\right) \\
& \gamma_{\rho}=-2 B_{\mu \nu \rho} u^{\mu} v^{\nu}+u^{\mu}\left(\partial_{\rho} \beta_{\mu}-\partial_{\mu} \beta_{\rho}\right)+\left(\alpha_{\mu} \partial_{\rho}+\partial_{\mu} \alpha_{\rho}\right) v^{\mu} \\
& \quad((u, \alpha),(v, \beta))=u^{\mu} \beta_{\mu}+\alpha^{\mu} v_{\mu} \\
& \left\{\begin{array}{c}
\left\{J_{R(u, \alpha)}(\sigma), J_{R(v, \beta)}\left(\sigma^{\prime}\right)\right\}=J_{R(w, \gamma)} \delta\left(\sigma-\sigma^{\prime}\right)+((u, \alpha),(v, \beta)) \delta^{\prime}\left(\sigma-\sigma^{\prime}\right) \\
w^{\mu}=\partial_{\nu} u^{\mu} v^{\nu}-\partial_{\nu} v^{\mu} u^{\nu}-\kappa \alpha_{\nu} \theta^{\nu \rho} \partial_{\rho} v^{\mu}-\kappa \alpha_{\nu} \partial_{\rho} v^{\nu} \theta^{\nu \rho}+\kappa \alpha_{\nu} v^{\rho} \partial_{\rho} \theta^{\nu \mu}+ \\
\quad \kappa \theta^{\nu \rho} \partial_{\rho} u^{\mu} \beta_{\nu}-\kappa \partial_{\nu} \theta^{\rho \mu} \beta_{\rho} u^{\nu}-\kappa \partial_{\nu} \beta_{\rho} u^{\rho} \theta^{\nu \mu}-\kappa^{2} R^{\mu \nu \rho} \alpha_{\nu} \beta_{\rho} \\
\gamma_{\mu}=\partial_{\nu} \alpha_{\mu} v^{\nu}+\alpha_{\nu} \partial_{\mu} v^{\nu}+\kappa \theta^{\nu \rho} \partial_{\rho} \alpha_{\mu} \beta_{\nu}-\kappa \theta^{\nu \rho} \partial_{\rho} \beta_{\mu} \alpha_{\nu}+ \\
u^{\nu}\left(\partial_{\mu} \beta_{\nu}-\partial_{\nu} \beta_{\mu}\right)-\kappa Q_{\mu}^{\nu \rho} \alpha_{\nu} \beta_{\rho}
\end{array} .\right.
\end{aligned}
$$

Charges

- Charges are defined as usual:

$$
Q_{C(u, \alpha)}=\int d \sigma J_{C(u, \alpha)}(\sigma), \quad Q_{R(u, \alpha)}=\int d \sigma J_{R(u, \alpha)}(\sigma)
$$

- They satisfy following algebra:

$$
\begin{aligned}
& \left\{Q_{C(u, \alpha)}, Q_{C(v, \beta)}\right\}=-Q_{C[(u, \alpha),(v, \beta)]_{C}} \\
& \left\{Q_{R(u, \alpha)}, Q_{R(v, \beta)}\right\}=-Q_{R[(u, \alpha),(v, \beta)]_{R}}
\end{aligned}
$$

Courant bracket

- Courant bracket is a generalization of the Lie bracket.
- Lie bracket is the operation on the tangent bundle, while Courant bracket is the operation on the direct sum of the tangent bundle and the vector bundle of 1 -forms.

$$
[u+\alpha, v+\beta]_{C}=[u, v]_{L}+L_{u} \beta-L_{v} \alpha-\frac{1}{2} d\left(i_{u} \beta-i_{v} \alpha\right)+H(u, v, .)
$$

- Courant bracket does not satisfy the Jacobi identity. The Jacobiator of the Courant bracket is an exact form.

In our theory:

$$
\begin{aligned}
{[u+\alpha, v+\beta]_{c} } & =\left(v^{\nu} \partial_{\nu} u^{\mu}-u^{\nu} \partial_{\nu} v^{\mu}\right)+u^{\mu}\left(\partial_{\rho} \beta_{\mu}-\partial_{\mu} \beta_{\rho}\right) \\
& -v^{\mu}\left(\partial_{\rho} \alpha_{\mu}-\partial_{\mu} \alpha_{\rho}\right) v^{\mu}-2 B_{\mu \nu \rho} u^{\mu} v^{\nu}
\end{aligned}
$$

Roytenberg bracket

- Roytenberg bracket is a generalization of Courant bracket, in a way that it includes a bi-vector $\Pi=\frac{1}{2} \Pi^{\mu \nu} \partial_{\mu} \partial_{\nu}$ as well.

$$
\begin{aligned}
{[u+\alpha, v+\beta]_{R}=} & {[u, v]_{L}+L_{u} \beta-L_{v} \alpha-\frac{1}{2} d\left(i_{u} \beta-i_{v} \alpha\right)+H(u, v, .)-} \\
& H \Pi(u, v)+\Pi H(\alpha, v, .)-\Pi H(\beta, u, .) \\
& \left(L_{v} \alpha-L_{u} \beta+\frac{1}{2} d\left(i_{u} \beta-i_{v} \alpha\right)\right) \Pi+ \\
& \Lambda^{2} \Pi H(\alpha, ., v)-\Lambda^{2} \Pi H(\beta, ., u)-[\alpha, \beta]_{\Pi+}+ \\
& \Lambda^{2} \Pi H(\alpha, \beta, .)-[v, \alpha \Pi]_{L}+[u, \beta \Pi]_{L+} \\
& \left(\frac{1}{2}[\Pi, \Pi]_{S}-\Lambda^{3} \Pi H\right)(\alpha, \beta, .)
\end{aligned}
$$

Questions?

