

On inflation in the RSII and holographic braneworld

Goran Djordjević

Department of Physics Faculty of Sciences and Mathematics University of Niš & SEENET-MTP CentrE, Serbia

and several collaborators

Gravity and String Theory: New ideas for unsolved problems III (In honour of Prof. Branislav Sazdović's retirement) September 7-9 2018, Zlatibor, СРБИЈА

Outline

- Introduction and motivation
- Inflation
- Tachyons
- Braneworld universe and Randall Sundrum Models (RSI/RSII)
- Numerical results
- Ongoing Research
- Miscellaneous and Conclusion

Might be inspired by a recent lecture of my colleague Dragan Huterer (Michigan University) during BW2018 in Niš

Could choose 3 key questions in, nowdays, Cosmology

- 1. Inflation (in Early Universe)
- 2. Dark matter
- 3. Dark energy

1. Inflation (in Early Universe)

- At what energy?
- How many fields?
- With what interactions?

- 2. Dark Matter
- What is\are DM particle(s)?
- What are its\their interactions, decay modes ... ?
- 3. Dark Energy
- What is the physics behind the (current) accelerated expansion?

Background of personal motivation

• Conjectures and papers of Ashoka Sen and others (1999-2002-...)

a) tachyon matter

b) nonarchimedean/*p*-adic mathematical background of strings, branes and tachyons

- *p*-Adic numbers and nonarchimedean geometry in physics (Volovich, Dragovic ...)
- *p*-Adic and adelic strings (Volovich, Freund, Witten, Shatashvili, Zwiebach ...)
- *p*-Adic inflation (Barnaby, Cline, Koshelev ...)
- Extra dimensions and Randal-Sundrum model(s)

- The inflationary universe scenario in which the early universe undergoes a rapid expansion has been generally accepted as a solution to the horizon problem and some other related problems of the standard big-bang cosmology
- Quantum cosmology: probably the best way to describe the evolution of the early universe, however ...
- Recent years a lot of evidence from WMAP and Planck observations of the CMB

Problems of the Standard Cosmology

- Horizon: CMB temperature T = 2.728 K, $\Delta T/T \sim 10^{-5}$ Causal horizon at decoupling ct_{dec} subtends $\simeq 1^{\circ}$.
- **Flatness:** Friedmann equation: $\Omega 1 = K/a^2H^2 \propto a(a^2)$ matter (radiation). At e.g. $T = 1 \text{ MeV } \Omega - 1 \simeq 10^{-18}$ $m \gg 10^2$
- **Relics:** Extensions of Standard Model contain stable massive particles . E.g. GUT monopoles, SUGRA gravitinos.
- Fluctuations: How? Why 10-5?
- These features of the Universe are understandable in **inflationary cosmology**.
- But ... Big Bang initial singularity?

Inflationary Cosmology

Inflation means:

 $\ddot{a} > 0$

- Early Universe had an accelerating phase
- Huge increase in size: "number of e-foldings"
- Quantum fluctuations in a massless scalar field generate perturbations. $N_e \equiv \ln(a_{end} / a_i) \simeq 60$

Scalar fields in cosmology

$$S = -\int d^4x \sqrt{-g} \left(g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi + V(\phi)\right)$$

Recall FRW metric for flat Universe

$$g_{\mu\nu} = diag(-1, a^2(t))$$

• Field equation:
$$\ddot{\phi} + 3\frac{\dot{a}}{a}\dot{\phi} - \frac{1}{a^2}\nabla^2\phi + V'(\phi) = 0$$

• Energy density:
$$\rho = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}\frac{1}{a^2}(\nabla\phi)^2 + V(\phi)$$

• Pressure:
$$p = \frac{1}{2}\dot{\phi}^2 + \frac{1}{6}\frac{1}{a^2}(\nabla\phi)^2 - V(\phi)$$

Slow roll inflation

- Postulate that the scalar field is
 - Homogenous: $\phi = \phi(t)$
 - Overdamped: ("slow roll")

 $\left|\ddot{\phi}\right| \ll 3H \left|\dot{\phi}\right|$

• Sufficient conditions for slow roll:

$$\varepsilon = \frac{1}{2} m_p^2 \left(\frac{V'(\phi)}{V(\phi)} \right)^2 \ll 1, \ \left| \eta \right| = \left| m_p^2 \frac{V''(\phi)}{V(\phi)} \right| \ll 1$$

• Potential must be "flat" or $\phi \gg m_p$

Slow roll inflation

.

• Energy density:

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi) = V(\phi)\left(1 + \frac{1}{3}\varepsilon\right)$$
Pressure:

$$p = \frac{1}{2}\dot{\phi}^2 - V(\phi) = -V(\phi)\left(1 - \frac{1}{3}\varepsilon\right)$$

- Equation of state: $p \simeq -\left(1 \frac{2}{3}\varepsilon\right)\rho$
- Solution to Friedmann eqn.

$$a(t) \propto t^{1/\varepsilon} \Big(\rightarrow \exp(Ht), \ H = \sqrt{V/3m_p^2} \Big)$$

Amount of expansion

- Quantified by "number of *e*-foldings" $N_e \equiv \ln(a_{end} / a_i)$
- Integrate $3\frac{\dot{a}}{a}\dot{\phi} = -V'(\phi), \text{ or } \frac{V}{m_p^2}\frac{d\phi}{d\ln a} = -V'(\phi)$
- Result: $N_e = \ln\left(\frac{a_{end}}{a_i}\right) = \frac{1}{m_n^2} \int_{\phi}^{\phi_{end}} \frac{V}{V'} d\phi$
- Example: $V = \frac{1}{2}m^2\phi^2 \text{ gives } N_e = \frac{1}{2}\frac{(\phi_{end} - \phi_i)^2}{m_e^2}$

End of inflation

$$\mathcal{E} = 1 \text{ or } |\eta| = 1$$

• End of inflation:

• Example:
$$V = \frac{1}{2}m^2\phi^2$$
, $\varepsilon = 2m_p^2/\phi^2$, giving $\phi_{end} = \sqrt{2}m_p$

$$\phi \rightarrow \phi_0 \sin(mt)/t, \ a(t) \rightarrow t^{2/3}$$

Field oscillates:

$$ho_{rh}$$
 < $V(\phi_{end})$

- Field decays into other species (p)reheating *T_{rh}*temperature
- Thermalisation to energy density
- must allow nucleosynthesis (1 MeV) • NB
- must allow baryogenesis $(T > 100 \text{ GeV})^{a}$ • NB

Solving the horizon problem

- Consider mode with comoving momentum k, physical inverse wavenumber , compared with Hubble length $\lambda(t) = a(t)/k$ $L_H(t) = H^{-1}$
- Inflation: $a(t) \propto t^{1/\varepsilon}, H^{-1} = \varepsilon t$
- Radiation:

$$a(t) \propto t^{1/2}, H^{-1} = 2t$$

• Matter:

$$a(t) \propto t^{2/3}, H^{-1} = 3t/2$$

Solving the horizon problem

- During inflation the mode's physical wavelength grows faster than the Hubble length. Let $t_1(k)$ be time at which $\lambda(t) = H^{-1}$ during inflation ("horizon exit")
- During standard radiation and matter dominated eras Hubble length grows faster. Let $t_2(k)$ be time at which $\lambda(t) = H^{-1}$ during standard era ("horizon entry").
- Points that now are not in causal contact were in the same Hubble volume during inflation

Sufficient inflation

- Modes entering horizon now $\lambda_0(t_0) = a(t_0)/k_0 = H_0^{-1}$
- Require they first crossed horizon (time) during inflation.
- Horizon exit for *k*₀ mode:

$$a(t_1)k_0^{-1} = H^{-1}(t_1)$$

• Hence
$$\frac{a(t_1)}{a(t_0)} = \frac{H_0}{H(t_1)}$$

• Assume adiabatic expansion between reheat and today:

$$N_{e}(t_{1}) = 67 + \ln\left(\frac{T_{th}}{10^{16} \, GeV}\right) + \frac{1}{6}\ln\frac{g(T_{rh})}{g(T_{0})} + \frac{1}{2}\ln\frac{V(t_{1})}{V_{end}} + \frac{1}{2}\ln\frac{V_{end}}{\rho_{rh}} - \frac{1}{3}\ln\frac{a_{rh}}{a_{end}}$$
$$\ln\left(V(t_{1})/V_{end}\right) = 2\varepsilon N_{e}(t_{1})$$

Require at least about 60 e-folds of inflation

Solving the flatness problem

• Recall Friedmann equation
$$\Omega - 1 = K/a^2 H^2$$

- Inflation $H^2 \propto a^{-2\varepsilon}$, $\Omega(t) 1 \propto a^{-2(1-\varepsilon)'}$
- Reheating/matter $H^2 \propto a^{-3}, \Omega 1 \propto a$

• Radiation
$$H^2 \propto a^{-4}$$
, $\Omega - 1 \propto a^2$

$$\frac{\Omega(t_0) - 1}{\Omega(t_1) - 1} \simeq e^{-2N_e(t_1)} \frac{a_{rh}}{a_{end}} \left(\frac{a_{eq}}{a_{rh}}\right)^2 \frac{a_0}{a_{eq}} \sim e^{-10} \left(\frac{a_{rh}}{a_{end}}\right)^{-\frac{4}{3}}$$

• Have estimated $\frac{\rho_{rh}}{V_{end}} \sim \left(\frac{a_{rh}}{a_{end}}\right)^{-3}$

• Even if inflation begins at t_1 with $\Omega(t_1) \neq 1$ Universe is now very flat.

Observational parameters

- Satellite Planck
 (2009 2013 2015)
- Latest results are recently published 2018.

Planck 2015 results: XIII. Cosmological parameters, Astronomy & Astrophysics. 594 (2016) A13 Planck 2015 results. XX. Constraints on inflation, Astronomy & Astrophysics. 594 (2016) A20

Model	Parameter	Planck TT+lowP	Planck TT+lowP+lensing	Planck TT+lowP+BAO	Planck TT, TE, EE+lowP
	n _s	0.9666 ± 0.0062	0.9688 ± 0.0061	0.9680 ± 0.0045	0.9652 ± 0.0047
$\Lambda \text{CDM}+r$	$r_{0.002}$	< 0.103	< 0.114	< 0.113	< 0.099
	n _s	0.9667 ± 0.0066	0.9690 ± 0.0063	0.9673 ± 0.0043	0.9644 ± 0.0049
$\Lambda CDM+r$ + $dn_s/d\ln k$	$r_{0.002}$	< 0.180	< 0.186	< 0.176	< 0.152
	r	< 0.168	< 0.176	< 0.166	< 0.149
	$dn_s/d\ln k$	$-0.0126^{+0.0098}_{-0.0087}$	$-0.0076^{+0.0092}_{-0.0080}$	-0.0125 ± 0.0091	-0.0085 ± 0.0076