(Non)integrability and the bound on chaos in topological black hole geometries

Mihailo Čubrović Institute of Physics Belgrade

Gravity and String Theory III, Zlatibor, Serbia, 2018.

Outline

Integrability in nature and in string theory

Topological black holes

- (Non)integrability - analytical and numerical
- Bound on chaos?

Outline

© Integrability in nature and in string theory

Topological black holes

- (Non)integrability - analytical and numerical
- Bound on chaos?

Integrability

Everybody knows: an N degree-of-freedom integrable system has N independent integrals of motion

In detail: several different definitions
Not only a mathematical curiosity: crucial for deeper understanding

- Quantum integrability - even tougher problem
- In this talk classical only!

Kolmogorov-Arnol'd-Moser

A. N. Kolmogorov
V. I. Arnol'd

- KAM theory- geometry of the phase space
- Action-angle variables and invariant tori

Coordinates \& momenta

Angles periodic $\varphi \sim \sin \omega t$

No algorithmic way to find action-angle variables

Kolmogorov-Arnol'd-Moser

Integrable: phase space foliated by tori Periodic motion on the torus (here rotation; libration also possible)
Nonintegrable with perturbation $\boldsymbol{\epsilon}$: progressive destruction of invariant tori but some still remain until we reach $\epsilon_{\text {crit }}$

Kolmogorov-Arnol'd-Moser

Some orbits stable for all times, but some others can be arbitrarily chaotic

Effective Langevin equation for actions in the vicinity of a torus:

$$
\dot{I}=-\epsilon \partial K_{1} / \partial \varphi \rightarrow\langle\dot{I}\rangle=\epsilon F_{1}(I) \eta(t)
$$

How relevant this "Arnol'd diffusion" is depends on timescales:

- solar system $t_{\text {diff }} \sim 10^{10} t_{0} 10^{10}$ years
confined plasmas $t_{\text {diff }} \sim 10^{9} t_{0} 10$ days

Differential Galois theory

Galois theory in an algebraic field with a differential operator (Leibniz rule)
Consider functions from a differential field F with constant subfield C and simple extension E

Differential Galois theory

Galois theory in an algebraic field with a differential operator (Leibniz rule)
Consider functions from a differential field F with constant subfield C and simple extension E

- Can an ODE be integrated by quadratures? <-> is there such an E that it has the same C as F but is closed to inverses of differential operations?
- Extends the intuition that integrals of rational functions are polynomials possibly multipled by logs
Can be implemented algorithmically with some limitations - Kovacic algorithm

The foundation - Liouville theorem

Is a Hamiltonian H on the phase space M integrable?

Find an invariant submanifold P.

- Project the Hamiltonian EOMs X on P: $\left.X\right|_{P}$
- Find variational equations $\left.\delta X\right|_{P}$ in a tangen plane to P
- Now H is integrable if the largest connected subgroup of the Galois group is Abelian

Integrability in string theory

Relevant for quantization, integrability in gauge theories (including but not limited to AdS/CFT)

Particles (geodesics) and strings: Arutyunov, Nekrasov, Tseytlin, Lunin... 2000s, 2010s

- D-brane stacks: one or two parallel stacks integrable (Chervonyi\&Lunin 2014), base needs to be of the form:

$$
d s_{b}^{2}=d r_{1}^{2}+r_{1}^{2} d \Omega_{d_{1}}^{2}+d r_{2}^{2}+r_{2}^{2} d \Omega_{d_{2}}^{2}
$$

- Stepanchuk\&Tseytlin 2013: integrability established for AdS $_{p} \times S^{q}$ (and for flat space); brane configurations that interpolate between them nonintegrable

Integrability in string theory

Simple geometries explored by Basu \& Pando Zayas (2010s)
Planar and AdS Schwarzschild, planar and AdS RN (nonextremal), AdS $_{p} \times$ SE q (Sasaki-Einstein manifold), AdS soliton nonintegrable

- Extremal black holes should be integrable if the bound on chaos conjecture is to be believed: bound proportional to temperature, no chaos around $\mathrm{T}=0$ horizon

Outline

Integrability in nature and in string theory

Topological black holes

- (Non)integrability - analytical and numerical
- Bound on chaos?

Construction from AdS

Old story, apparently not very popular these days Event horizon - surface of higher genus
M. Banados, R. B. Mann, S. Holst, P. Peldan and others

Construction from AdS

- Old story, apparently not very popular these days Event horizon - surface of higher genus
M. Banados, R. B. Mann, S. Holst, P. Peldan and others Start from AdS_{N+1} and identify the points in the R_{M} Minkowski subspace ($M \leq N$ connected by some discrete subgroup of the $\mathrm{SO}(\mathrm{M}-1,1)$ isometry
- To avoid the closed timelike curves first restrict to the subspace $x_{0}^{2}-x_{i} x^{i}=R_{+}^{2} / L^{2}>0$ - gives a compact subspace of negative curvature:

$$
d s_{M}^{2}=d \varphi_{1}^{2}+\sinh ^{2} \varphi_{1} d \varphi_{2}^{2}+\sinh ^{2} \varphi_{1} \sinh ^{2} \varphi_{2} d \varphi_{3}^{2}+\ldots
$$

Constructiong from AdS

2. To avoid the closed timelike curves restrict to the Subspace $\operatorname{AdS}_{N+1}(M \leq N)$-gives a compact subspace of negative curvature:
$d s_{M}^{2}=d \varphi_{1}^{2}+\sinh ^{2} \varphi_{1} d \varphi_{2}^{2}+\sinh ^{2} \varphi_{1} \sinh ^{2} \varphi_{2} d \varphi_{3}^{2}+\ldots$

- The remaining coordinates define a BH horizon by a change of variables: $\left(x_{M}, x_{M+1}, \ldots x_{N+1}\right) \rightarrow\left(t, R, \theta_{1}, \theta_{2}, \ldots \theta_{N-M-1}\right)$
- The metric:

$$
d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+r^{2}\left(d \varphi_{1}^{2}+\sinh ^{2} \varphi_{1} d \varphi_{2}^{2}+\ldots\right)+\frac{L^{4}}{R_{+}^{2}} \cosh ^{2}\left(\frac{R_{+}}{L} t\right)\left(d \theta_{1}^{2}+\sinh ^{2} \theta_{1} d \theta_{2}^{2}+\ldots\right)
$$

- BH can be charged by picking the appropriate $f(r)$

Higher genus horizons

- Identify now the points related by an isometry from SO(M-1,1): $d s_{M}^{2} \rightarrow d H_{g}^{2}$ - surface of genus $g \in N$
Toric BH (g=1): $d s_{M}^{2}=d \varphi_{1}^{2}+d \varphi_{2}^{2}+d \varphi_{3}^{2}+\ldots$
- Spherical BH ($\mathrm{g}=0$): $d s_{M}^{2}=d \varphi_{1}^{2}+\sin ^{2} \varphi_{1} d \varphi_{2}^{2}+\sin ^{2} \varphi_{1} \sin ^{2} \varphi_{2} d \varphi_{3}^{2}+\ldots$
- The metric:

$$
d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+r^{2} d H_{g}^{2}+\frac{L^{4}}{R_{+}^{2}} \cosh ^{2}\left(\frac{R_{+}}{L} t\right)\left(d \theta_{1}^{2}+\sinh ^{2} \theta_{1} d \theta_{2}^{2}+\ldots\right)
$$

- Solution of Einstein equations in the vacuum for negative constant dilaton

Identification of points

Toric $\mathrm{BH}(\mathrm{g}=1)$: $d s_{M}^{2}=d \varphi_{1}^{2}+d \varphi_{2}^{2}+d \varphi_{3}^{2}+\ldots$ - infinite hyperplane if no identification is made

Requirements: sum of angles $\geq 2 \pi$ to avoid conical singularities; 4 g sides needed: for $\mathrm{g}=1$-> square -> wrapping (identification) yields a torus

Identification of points

D. Toric $\mathrm{BH}(\mathrm{g}=1)$: $d s_{M}^{2}=d \varphi_{1}^{2}+d \varphi_{2}^{2}+d \varphi_{3}^{2}+\ldots$ - infinite hyperplane if no identification is made

Requirements: sum of angles $\geq 2 \pi$ to avoid conical singularities; 4 g sides needed: for $\mathrm{g}=1$-> square -> wrapping (identification) yields a torus

- Hyperbolic BH: $d s_{M}^{2}=d \varphi_{1}^{2}+\sinh ^{2} \varphi_{1} d \varphi_{2}^{2}+\sinh ^{2} \varphi_{1} \sinh ^{2} \varphi_{2} d \varphi_{3}^{2}+\ldots$

Again need sum of angles $\geq 2 \pi$ and 4 g sides but sums of angles on a pseudosphere have a lesser sum than on a plane $->$ minimal $\mathrm{g}=2$

Topological BH formation

Collapes of presureless dust - but need to start from the AdS space with identifications (Mann\&Smith 1997)

Topological BH formation

Collapes of presureless dust - but need to start from the AdS space with identifications (Mann\&Smith 1997)

Cosmological C-metric - dynamical, more realistic (Mann 1997, Kaloper 1997)

Topological BH formation

Collapes of presureless dust - but need to start from the AdS space with identifications (Mann\&Smith 1997)

Cosmological C-metric - dynamical, more realistic (Mann 1997, Kaloper 1997)

BH with fermionic hair (possible in AdS) with a Berry phase (Ćubrović 2018) - purely formal but can be related to cond-mat systems

$$
S_{\psi}=\int d^{v+1} x \sqrt{-g} \Psi\left(D_{a} \Gamma^{a}-m\right)+\oint d^{v} x \sqrt{h} / \bar{\Psi}_{-} e^{\frac{i \varphi \Gamma^{2}}{2}} \Psi_{+}-\Psi_{-} \Psi_{+}
$$

$$
T_{a b}=\left\langle\bar{\Psi} D_{a} \Gamma_{b} \Psi\right\rangle
$$

Feed this into
the Einstein equations

Surface term introduces Berry phase

Backreaction by fermions introduces topological horizon

Outline

Integrability in nature and in string theory

Topological black holes
(Non)integrability - analytical and numerical

- Bound on chaos?

Closed string in TBH background

Polyakov action:
$S=\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma\left(\eta_{a b} G_{\mu \nu} \partial_{a} X^{u} \partial_{b} X^{\nu}+\epsilon_{a b} B_{\mu \nu} \partial_{a} X^{u} \partial_{b} X^{u}\right)$
Gauge $h_{a b}=\eta_{a b} \rightarrow>$ Virasoro constraints:

$$
\eta_{a b} G_{\mu v} \partial_{a} X^{u} \partial_{b} X^{v}=0, \quad \epsilon_{a b} \partial_{a} X^{u} \partial_{b} X^{v}=0
$$

Closed string in TBH background

Polyakov action:

$$
S=\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma\left(\eta_{a b} G_{\mu v} \partial_{a} X^{u} \partial_{b} X^{\nu}+\epsilon_{a b} B_{\mu v} \partial_{a} X^{u} \partial_{b} X^{u}\right)
$$

Gauge $h_{a b}=\eta_{a b} \rightarrow>$ Virasoro constraints:

$$
\eta_{a b} G_{\mu v} \partial_{a} X^{u} \partial_{b} X^{v}=0, \quad \epsilon_{a b} \partial_{a} X^{u} \partial_{b} X^{v}=0
$$

- Ansatz:
- point-like dynamics \sim just chaos, no turbulence -> nontrivial dependence only on τ
- three DOF -> $R(\tau), T(\tau)+$ either $\Theta_{1}(\tau)$ or $\Phi_{1}(\tau)$

Closed string in TBH background

- Dynamical $\Theta_{1}(1)$ or dynamical Φ_{1} (2) with winding along $\Theta_{2}(a)$ or $\Phi_{2}(b)$
Six cases:
(1a) $T(\tau), R(\tau), \Theta_{1}(\tau) ; \Theta_{2}(\sigma)=n \sigma, \quad M=2, N=4$
(1b) $T(\tau), R(\tau), \Theta_{1}(\tau) ; \Phi_{1}(\sigma)=p \sigma, M=2, N=3$
(1ab) $T(\tau), R(\tau), \Theta_{1}(\tau) ; \Theta_{2}(\sigma)=n \sigma, \Phi_{1}(\sigma)=p \sigma, \quad M=2, N=4$
(2a) $T(\tau), R(\tau), \Phi_{1}(\tau) ; \Theta_{1}(\sigma)=n \sigma, M=2, N=3$
(2b) $T(\tau), R(\tau), \Phi_{1}(\tau) ; \Phi_{2}(\sigma)=p \sigma, M=2, N=3$
$(2 \mathrm{ab}) T(\tau), R(\tau), \Phi_{1}(\tau) ; \Theta_{1}(\sigma)=n \sigma, \Phi_{2}(\sigma)=p \sigma, M=2, N=4$

Expectations

Planar and AdS non-extremal black branes and black holes nonintegrable. What could go right with TBHs?
(i) just a single equilibrium point instead of infinity along Θ coordinates
(ii) horizons with negative mass term in $f(R)$ possible, might influence the possibility to express the coefficients of the linearized equations as rational functions

Integrable TBH

Gonsistent (3+1)d truncation from the (4+1)d case (2b): $d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+r^{2}\left(d \varphi_{1}^{2}+\sinh ^{2} \varphi_{1} d \varphi_{2}^{2}\right) \quad$ Peldan et al 1996

Ansatz: $T(\tau), R(\tau), \Phi_{1}(\tau) ; \Phi_{2}=p \sigma$

- Integral of motion: $K=T^{\prime} f(R)=$ const.

EOMs:

$$
\Phi_{1}^{\prime \prime}+2 \frac{R^{\prime}}{R} \Phi_{1}{ }^{\prime}+\frac{p^{2}}{2} \sinh 2 \Phi_{1}=0
$$

$$
R^{\prime \prime}-f R\left(\Phi_{1}{ }^{\prime 2}-\sinh ^{2} \Phi_{1}\right)-\frac{f^{\prime}}{2 f}\left(R^{\prime 2}-f^{2} T^{\prime 2}\right)=0
$$

2D Hamiltonian:

$$
H_{\mathrm{eff}}=\frac{f(R)}{2} P_{R}^{2}+\frac{1}{2 R^{2}} P_{\Phi_{1}}^{2}+\frac{K^{2}}{2 f(R)}+p^{2} R^{2} \sinh ^{2} \Phi_{1}
$$

Integrable TBH: hyperbolic pendulum dynamics

Canonical transformation:

$$
\begin{aligned}
& S=s(\rho) P_{\Phi_{1}}:\left(R, \Phi_{1}\right) \rightarrow(\rho, \lambda) \\
& H_{\text {eff }}=\frac{1}{2} P_{\rho}^{2}+\frac{K^{2}}{2 s(\rho) f(\rho)\left(f^{\prime}(\rho)\right)^{2}}+\frac{s(\rho)}{2 \rho^{2}}\left(P_{\lambda}^{2}+p^{2} \sinh ^{2} \lambda\right)=H_{\rho}+\frac{s(\rho)}{2 \rho^{2}} H_{\lambda}
\end{aligned}
$$

- Phase space foliated by tori at $H_{\lambda}=$ const.
- Now in each subsystem it is possible to introduce action-angle variables if $s(\rho) / 2 \rho^{2}$ is a $1-1$ mapping
- Don't know how to do this for general f. Works for:
- $f=r^{2} \pm 1-2 m / r+q_{x}^{2} / r^{2}$-extremal (all genuses)
- $f=r^{2}-1-2 m / r+q^{2} / r^{2} \quad m \leq q / 4 \quad-$ hyperbolic
- higher genuses for special values of m, q

The one fixed point

The only fixed point solution for hyperbolic, toric and higher genus horizons: $R=R_{0}, T=K / f\left(R_{0}\right), \Phi_{1}=0$

Rings a bell: need at least one stable and one unstable manifold for chaos

The one fixed point

The only fixed point solution for hyperbolic, toric and higher genus horizons: $R=R_{0,} T=K / f\left(R_{0}\right), \Phi_{1}=0$

Rings a bell: need at least one stable and one unstable manifold for chaos

Orbits:

- scatter into infinity
- make n orbits around the BH and then to infinity
- make n orbits around the BH and then fall in
- fixed point: balance at the extremal horizon or some distance R_{0} around the horizon

Invariant plane and variational equations

2. Invariant plane: $\left(P_{R}(\tau), P_{\Phi_{1}}=0, R(\tau), \Phi_{1}=0\right.$

Variational equation in the tangent plane:

$$
\left.\delta \Phi^{\prime \prime}{ }_{1}+2\left(\log R^{0}(\tau)\right)\right)^{\prime} \delta \Phi_{1}{ }^{\prime}+2 p^{2} \delta \Phi_{1}=0
$$

$$
\delta R^{\prime \prime}+P_{R}^{0}(\tau)\left(1+f^{\prime}\left(R^{0}(\tau)\right)\right) \delta R^{\prime}+\partial_{R^{0}}\left(\frac{f^{\prime}\left(R^{0}(\tau)\right)}{f\left(R^{0}(\tau)\right)^{2}}\right) \delta R=0
$$

- Analytical solution in the invariant plane:

$$
\sin \Phi(\tau)=\operatorname{sn}\left(a\left(\tau-\tau_{0}, \frac{2 p^{2}}{K^{2}}, \frac{R_{0} f_{0}^{2}}{f_{0}^{\prime}}\right)\right.
$$

For the extremal horizon we immediately establish integrability, variational equations reduce just to:

$$
\delta \Phi^{\prime \prime}{ }_{1}+p^{2} \delta \Phi_{1}=0, \quad \delta R^{\prime \prime}+P_{R}^{0} \delta R^{\prime}=0
$$

The Kovacic algorithm

Automatic search for the center of the Galois group

- Practical recipe:
- write down linearized perturbation equations in the plane tangent to an invariant manifold
- check if the coefficients of $\delta X(\tau)$ can be expressed as rational functions of τ
- For the second step we typically need to transform the variable $u(\tau)$
- For (2b): $u(\tau)=F\left(\left.\frac{\tau-\tau_{0}}{2 g f\left(R_{0}(\tau)\right)} \right\rvert\, \frac{K}{2 p^{2} f\left(R_{0}(\tau)\right)}\right)$

In other cases I don't know \rightarrow kovacicsol open source tool for Maple (there are many others)

The outcome

The hyperbolic black hole (2b) is always integrable for a closed winding string

The spherical black hole (2b) is neverintegrable

- The toric and higher genus cases integrable for special values of BH mass and charge - for generic values the different invariant manifolds mix and spoil integrability

Numerical checks

Clearly no proof of integrability but can disprove it
Careful: chaos -> nonintegrable but nonintegrable does not imply chaos - most noninterable string orbits are not chaotic!!!
(1) Poincare surfaces of section (SOS) to visaulize the geometry of the phase space and KAM tori
(2) Power spectrum - discrete -> integrable, continuous
-> chaos; also bifurcations
(3) Positive Lyapunov exponents (LE) $\rightarrow>$ chaos

KAM tori - hyperbolic horizon

- Direct visualization of KAM tori on Poincare surfaces of section (SOS)

$\left(R, P_{R}\right) @ \Theta=0, P_{\Theta}>0$
hyperbolic horizon $K=23.84 ; ~ m=1 / 2, q=1 / 6$

KAM tori - toric horizon

-The orbits in real space do not make closed paths

Toric horizon $K=0.32 ; ~ m=1 / 2, q=1 / 6$

KAM tori - Brezel horizon

- Regular orbits for $g=3$

$\left(R, P_{R}\right)$
@ $\Theta=0, P_{\Theta}>0$

R
Spherical horizon $K=1.32 ; \quad m=1 / 2, q=1 / 6$

Power spectrum - Brezel horizon

- Quasi-periodic motion (not simply periodic - impossible for a string)

Quick jump to chaos unless very close to horizon (will come back to this)

Power spectrum - toric horizon

- Nonintegrable orbits exhibit universal Brownian spectrum: $X(\omega)=1 / \omega^{2}$ for toric horizon

Other cases

(1a) Integrable for special mass \& charge

$$
d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+\frac{L^{4}}{R_{+}^{2}} \cosh ^{2}\left(\frac{R_{+}}{L^{2}} t\right)^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right)
$$

Integral of motion: $K=\Theta_{1}{ }^{\prime} \cosh ^{2}\left(R_{+} t / L^{2}\right)$

- Weird - explicitly time-dependent integrable metric

Other cases

(1a) Integrable for special mass \& charge

$$
d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+\frac{L^{4}}{R_{+}^{2}} \cosh ^{2}\left(\frac{R_{+}}{L^{2}} t\right)^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right)
$$

Integral of motion: $K=\Theta_{1}{ }^{\prime} \cosh ^{2}\left(R_{+} t / L^{2}\right)$

- Weird - explicitly time-dependent integrable metric
(2a) Non-integrable but has an extra integral of motion:

$$
d s^{2}=-f d t^{2}+\frac{d r^{2}}{f}+r^{2} d \varphi_{1}^{2}+\frac{L^{4}}{R_{+}^{2}} \cosh ^{2}\left(\frac{R_{+}}{L^{2}} t\right)^{2} d \theta_{1}^{2} ; \quad K=\Phi_{1}{ }^{\prime} R^{2}
$$

(1b), (1ab), (2ab) - nope - the mixing of Φ-terms and T-terms spoils everything

Outline

Integrability in nature and in string theory

Topological black holes

- (Non)integrability - analytical and numerical

Bound on chaos?

Conjecture on the bound on chaos

Maldacena, Shenker \& Stanford 2016: $\lambda \leq 2 \pi T$ for QFTs

This implies $\lambda \leq \kappa$ for BH horizons and $\lambda=0$ for extremal BHs

J. Maldacena

Conjecture on the bound on chaos

- Maldacena, Shenker \& Stanford 2016:
$\lambda \leq 2 \pi T$ for QFTs

This implies $\lambda \leq \kappa$ for BH horizons and $\lambda=0$ for extremal BH

- Idea of the proof:
(1) define LE from a correlation function: $C(t)=\left\langle\left[A(0),\left.B(t)\right|^{2}\right\rangle\right.$
(2) show that $C(t+i \tau)$ is bounded by unity and analytic in the half-strip $0 \leq t, \beta / 4 \geq \tau$
(3) apply the Schwarz-Pick theorem to obtain the bound

What could go wrong?

(1) reasonable, (3) rigorous maths

- correlation function might not factorize

Deep quantum

What could go wrong?

(1) reasonable, (3) rigorous maths

- correlation function might not factorize

Deep quantum effect

- polynomial decay for weak chaos (no well-defined "collision time" $\sim 1 / \mathrm{T}$)

What could go wrong?

(1) reasonable, (3) rigorous maths

- correlation function might not factorize
- polynomial decay for weak chaos (no well-defined "collision time" $\sim 1 / \mathrm{T}$)
- Does it even work in curved spacetime?
- Many think yes. Sounds reasonable at least if there is a global timelike Killing
- In any case in asymptotically AdS should make sense through AdS/CFT

Sanity check - integrable systems have zero LE

Systems (2b nonspherical) and (1a) have universal near-horizon variational equation: $\delta \Phi^{\prime \prime}+2 n^{2} \delta \Phi=0$

This means $\lambda=0 \quad$ - notice the plus sign in front of the second term!

Higher winding modes in static metrics increase the bound

. No easy way to keep the string (or anything else) right at the horizon

One approach: introduce external field to balance the horizon gravity (Hashimoto 2013) - but pair production? stability of the horizon?

- Expanding the variational equations near the horizon we get for stationary nonintegrable metrics (2a, 2ab):

$$
\delta \Phi^{\prime \prime}-2\left(f^{\prime}\left(R_{h}\right)\right)^{2} n^{2} \delta \Phi=0 \quad \text { Naive LE: } \quad \lambda_{0} \sim \kappa \times n
$$

- Higher winding numbers n violate the bound n times

This wouldn't happen if there was a mass scale: $E_{n} \sim E_{0}+n^{2}$

Non-static metrics do not obey the bound

- No universal near-horizon variational equation

For non-integrable cases the EOMs remain complicated (no extra integrals of motion); generically

$$
\delta \Phi^{\prime \prime}+\frac{T^{0}}{f\left(R^{0}\right)} \delta \Phi^{\prime}-2 f^{\prime}\left(R_{h}\right)^{2} \delta \Phi=0 \Rightarrow \lambda=\lim _{t \rightarrow \infty} \int_{0}^{\infty} d \tau^{\prime} f^{\prime}\left(R^{0}\left(\tau^{\prime}\right)\right)
$$

- But this is perhaps expected - although staticity not assumed in the proof it plays a role in factorization of the OTOC

Regularity of $T=0$ at the horizon

(1a) @ T=0
nonintegrable

(1b) @ T=0
nonintegrable

(2b) @ T=0
integrable

(1a) @ T=0.01 nonintegrable

(1b) @ T=0.01 nonintegrable

(2b) @ $T=0.5$ integrable

Some musings on the results...

Understand TBHs. Cosmology? Or just AdS/CFT?
Relation to AdS/CFT: look at open strings, these are connected to quarks in quark-gluon plasmas, tracer particles in hydrodynamics etc.
Can we get $\lambda_{0} \sim \kappa \times 2 s$ for fields?

