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Integrability
● Everybody knows: an N degree-of-freedom integrable 

system has N independent integrals of motion

● In detail: several different definitions

● Not only a mathematical curiosity: crucial for deeper 
understanding

● Quantum integrability – even tougher problem

● In this talk classical only!



  

Kolmogorov-Arnol'd-Moser

● KAM theory – geometry of the phase space

● Action-angle variables and invariant tori

● No algorithmic way to find action-angle variables

( p ,q) (I ,ϕ) : I=const. , ϕ∼sinω t

A. N. Kolmogorov V. I. Arnol'd

Coordinates & 
momenta

Actions=integrals 
of motion Angles periodic

Canonical transformation



  

Kolmogorov-Arnol'd-Moser

● Integrable: phase space foliated by tori

● Nonintegrable with perturbation        : progressive 
destruction of invariant tori but some still remain until we 
reach

ϵ

ϵcrit

Periodic motion on the 
torus (here rotation; 
libration also possible)

ϵ<ϵcrit
ϵ≈ϵcrit ϵ>ϵcrit



  

Kolmogorov-Arnol'd-Moser

● Some orbits stable for all times, but some others can be 
arbitrarily chaotic

● Effective Langevin equation for actions in the vicinity of 
a torus:

● How relevant this "Arnol'd diffusion" is depends on 
timescales:

 - solar system

 - confined plasmas

İ=−ϵ∂K1/∂ ϕ→⟨ İ ⟩=ϵ F1(I )η( t)

t diff∼1010 t 0 1010 years

t diff∼109t 0 10days
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Differential Galois theory

● Galois theory in an algebraic field with a differential 
operator (Leibniz rule)

● Consider functions from a differential field F with 
constant subfield C and simple extension E

● Can an ODE be integrated by quadratures? <-> is there 
such an E that it has the same C as F but is closed to 
inverses of differential operations?

● Extends the intuition that integrals of rational functions 
are polynomials possibly multipled by logs

● Can be implemented algorithmically with some 
limitations – Kovacic algorithm



  

The foundation – Liouville theorem

● Is a Hamiltonian H on the phase space M integrable?

● Find an invariant submanifold P.

● Project the Hamiltonian EOMs X on P:

● Find variational equations            in a tangen plane to P

● Now H is integrable if the largest connected subgroup of 
the Galois group is Abelian

X∣P

δ X∣P



  

Integrability in string theory

● Relevant for quantization, integrability in gauge theories 
(including but not limited to AdS/CFT)

● Particles (geodesics) and strings: Arutyunov, Nekrasov, 
Tseytlin, Lunin... 2000s, 2010s

● D-brane stacks: one or two parallel stacks integrable 
(Chervonyi&Lunin 2014), base needs to be of the form:

● Stepanchuk&Tseytlin 2013: integrability established for   
                 (and for flat space); brane configurations that 
interpolate between them nonintegrable  

dsb
2
=dr1

2
+r1

2dΩd1

2
+dr 2

2
+r2

2dΩd 2

2

AdSp×Sq



  

Integrability in string theory

● Simple geometries explored by Basu & Pando Zayas 
(2010s)

● Planar and AdS Schwarzschild, planar and AdS RN 
(nonextremal),                    (Sasaki-Einstein manifold), 
AdS soliton nonintegrable

● Extremal black holes should be integrable if the bound 
on chaos conjecture is to be believed: bound 
proportional to temperature, no chaos around T=0 
horizon

AdSp×SEq
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Construction from AdS
● Old story, apparently not very popular these days

● Event horizon – surface of higher genus

● M. Banados, R. B. Mann, S. Holst, P. Peldan and others

● Start from                and identify the points in the 
Minkowski subspace (         ) connected by some 
discrete subgroup of the SO(M-1,1) isometry

● To avoid the closed timelike curves first restrict to the 
subspace                            – gives a compact subspace 
of negative curvature:  

AdSN+1 RM

M≤N

x0
2
− xi x

i
=R+

2
/L2

>0

dsM
2
=d ϕ1

2
+sinh2

ϕ1d ϕ2
2
+sinh2

ϕ1 sinh
2
ϕ2d ϕ3

2
+…



  

Constructiong from AdS
● To avoid the closed timelike curves restrict to the 

subspace                 (          ) – gives a compact 
subspace of negative curvature:

● The remaining coordinates define a BH horizon by a 
change of variables:

● The metric:

● BH can be charged by picking the appropriate

AdSN+1 M≤N

dsM
2
=d ϕ1

2
+sinh2

ϕ1d ϕ2
2
+sinh2

ϕ1 sinh
2
ϕ2d ϕ3

2
+…

(xM , xM +1 ,…xN+1)→(t , R ,θ1,θ2,…θN−M−1)

ds2
=−fdt2+

dr 2

f
+r2 (d ϕ1

2
+sinh2

ϕ1d ϕ2
2
+…)+

L4

R+

2
cosh2(R+

L
t) (dθ1

2
+sinh2

θ1d θ2
2
+…)

f (r )



  

Higher genus horizons
● Identify now the points related by an isometry from 

SO(M-1,1):                    - surface of genus 

● Toric BH (g=1):

● Spherical BH (g=0):

● The metric:

● Solution of Einstein equations in the vacuum for 
negative constant dilaton

dsM
2
→dH g

2

ds2=−fdt2+
dr 2

f
+r2dH g

2+
L4

R+

2
cosh2(R+

L
t) (dθ1

2+sinh2θ1d θ2
2+…)

g∈N

dsM
2
=d ϕ1

2
+d ϕ2

2
+d ϕ3

2
+…

dsM
2
=d ϕ1

2
+sin2

ϕ1d ϕ2
2
+sin2

ϕ1 sin
2
ϕ2d ϕ3

2
+…



  

Identification of points
● Toric BH (g=1):                                         - infinite 

hyperplane if no identification is made

● Requirements: sum of angles           to avoid conical 
singularities; 4g sides needed: for g=1 -> square -> 
wrapping (identification) yields a torus 

dsM
2
=d ϕ1

2
+d ϕ2

2
+d ϕ3

2
+…

≥2π



  

Identification of points
● Toric BH (g=1):                                         - infinite 

hyperplane if no identification is made

● Requirements: sum of angles           to avoid conical 
singularities; 4g sides needed: for g=1 -> square -> 
wrapping (identification) yields a torus 

● Hyperbolic BH:

● Again need sum of angles          and 4g sides but sums 
of angles on a pseudosphere have a lesser sum than 
on a plane -> minimal g=2

dsM
2
=d ϕ1

2
+d ϕ2

2
+d ϕ3

2
+…

≥2π

dsM
2
=d ϕ1

2
+sinh2

ϕ1d ϕ2
2
+sinh2

ϕ1 sinh
2
ϕ2d ϕ3

2
+…

≥2π



  

Topological BH formation
● Collapes of presureless dust – but need to start from the 

AdS space with identifications (Mann&Smith 1997)
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Topological BH formation
● Collapes of presureless dust – but need to start from the 

AdS space with identifications (Mann&Smith 1997)

● Cosmological C-metric – dynamical, more realistic 
(Mann 1997, Kaloper 1997)

● BH with fermionic hair (possible in AdS) with a Berry 
phase (Čubrović 2018) – purely formal but can be 
related to cond-mat systems

● Backreaction by fermions introduces topological horizon

SΨ=∫ d
N+1 x √−g Ψ̄ (D aΓ

a−m)Ψ+∮ d N x √h (Ψ̄− e
iϕΓ ϕ

2 Ψ+−Ψ̄− Ψ+ )
Surface term 
introduces 
Berry phase

T ab=⟨ Ψ̄D aΓbΨ⟩
Feed this into 
the Einstein 
equations
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Closed string in TBH background
● Polyakov action:

● Gauge                  ->  Virasoro constraints:hab=ηab

ηabGμ ν∂a X
μ∂b X

ν=0, ϵab∂ a X
μ∂b X

ν=0

S=
1

2πα '
∫ d τ dσ (ηabGμν∂a X

μ
∂b X

ν
+ϵab Bμν∂a X

μ
∂b X

μ )

0



  

Closed string in TBH background
● Polyakov action:

● Gauge                  ->  Virasoro constraints:

● Ansatz:

 - point-like dynamics ~ just chaos, no turbulence ->

   nontrivial dependence only on

 - three DOF ->                     + either              or      

 

hab=ηab

ηabGμ ν∂a X
μ∂b X

ν=0, ϵab∂ a X
μ∂b X

ν=0

S=
1

2πα '
∫ d τ dσ (ηabGμν∂a X

μ
∂b X

ν
+ϵab Bμν∂a X

μ
∂b X

μ )

τ

R( τ) , T ( τ) Θ1(τ ) Φ1( τ)

0



  

Closed string in TBH background
● Dynamical        (1) or dynamical         (2) with winding 

along         (a) or        (b)

● Six cases:

● (1a)

● (1b)

● (1ab)

● (2a)

● (2b)

● (2ab)      

Θ1 Φ1

Θ2 Φ2

T (τ) , R( τ) ,Θ1(τ) ; Θ2(σ)=nσ , M=2,N=4

T (τ) , R( τ) ,Θ1(τ); Φ1(σ)=pσ , M=2,N=3

T (τ) , R( τ) ,Θ1(τ) ; Θ2(σ)=nσ ,Φ1(σ)=p σ , M=2,N=4

T (τ) , R( τ) ,Φ1( τ) ; Θ1(σ)=nσ , M=2,N=3

T (τ) , R( τ) ,Φ1( τ); Φ2(σ)=p σ , M=2,N=3

T (τ) , R( τ) ,Φ1( τ) ; Θ1(σ)=nσ ,Φ2(σ)=pσ , M=2,N=4



  

Expectations
● Planar and AdS non-extremal black branes and black 

holes nonintegrable. What could go right with TBHs?

● (i)  just a single equilibrium point instead of infinity along 
       coordinates

● (ii) horizons with negative mass term in           possible, 
might influence the possibility to express the coefficients 
of the linearized equations as rational functions     

f (R)

Θ



  

Integrable TBH 
● Consistent (3+1)d truncation from the (4+1)d case (2b):  

   

● Ansatz: 

● Integral of motion:

● EOMs:

●  2D Hamiltonian:

ds2
=−fdt2+

dr 2

f
+r2 (d ϕ1

2
+sinh2

ϕ1d ϕ2
2 )

Φ1 ' '+2
R '
R

Φ1 '+
p2

2
sinh 2Φ1=0

K=T ' f (R)=const.

Peldan et al 1996

R ' '−fR (Φ1 '
2
−sinh2

Φ1 )−
f '
2 f

(R '2−f 2T ' 2)=0

T (τ) , R( τ) ,Φ1( τ); Φ2=pσ

H eff=
f (R)

2
PR

2+
1

2R2 PΦ1

2 +
K2

2 f (R)
+ p2R2sinh2Φ1



  

Integrable TBH: hyperbolic pendulum 
dynamics 

● Canonical transformation:

● Phase space foliated by tori at

● Now in each subsystem it is possible to introduce 
action-angle variables if               is a 1-1 mapping 

● Don't know how to do this for general    . Works for:

 -                                     - extremal (all genuses)

 -                                                    - hyperbolic

 - higher genuses for special values of 

H eff=
1
2
Pρ

2
+

K2

2 s(ρ) f (ρ)( f ' (ρ ) )
2 +

s (ρ)

2ρ2
(Pλ

2
+ p2sinh2

λ )=Hρ+
s (ρ)

2ρ2 Hλ

S=s (ρ)PΦ1
: (R ,Φ1 ) → (ρ , λ )

Hλ=const .

s (ρ)/2ρ2

f

f=r 2
±1−2m /r+qx

2
/r 2

f=r 2
−1−2m /r+q2

/r2, m≤q / 4

m ,q



  

The one fixed point 
● The only fixed point solution for hyperbolic, toric and 

higher genus horizons:

● Rings a bell: need at least one stable and one unstable 
manifold for chaos

R=R0,T=K / f (R0) , Φ1=0



  

The one fixed point 
● The only fixed point solution for hyperbolic, toric and 

higher genus horizons:

● Rings a bell: need at least one stable and one unstable 
manifold for chaos

● Orbits:

 - scatter into infinity

 - make n orbits around the BH and then to infinity

 - make n orbits around the BH and then fall in

 - fixed point: balance at the extremal horizon or some 
distance       around the horizon

R=R0,T=K / f (R0) , Φ1=0

R0



  

Invariant plane and variational 
equations 

● Invariant plane:

● Variational equation in the tangent plane:

● Analytical solution in the invariant plane:

● For the extremal horizon we immediately establish 
integrability, variational equations reduce just to: 

(PR( τ) ,PΦ1
=0, R( τ) ,Φ1=0 )

δΦ ' ' 1+2( logR0
(τ )) ' δΦ1 '+2 p2

δΦ1=0

δ R ' '+PR
0 (τ) (1+ f ' (R0( τ)))δ R '+∂

R0( f ' (R0
( τ))

f (R0
( τ))

2 )δR=0

δΦ ' ' 1+ p
2δΦ1=0, δ R ' '+PR

0 δR '=0

sinΦ(τ)=sn(a ( τ−τ0 ) ,
2 p2

K2 ,
R0 f 0

2

f ' 0 )



  

The Kovacic algorithm 
● Automatic search for the center of the Galois group

● Practical recipe:

 - write down linearized perturbation equations in the 
plane tangent to an invariant manifold

 - check if the coefficients of              can be expressed 
as rational functions of

● For the second step we typically need to transform the 
variable

● For (2b):

● In other cases I don't know -> kovacicsol open 
source tool for Maple (there are many others) 

δ X (τ)
τ

u( τ)

u( τ)=F(
τ−τ0

2g f (R0( τ))
∣

K

2 p2 f (R0( τ)) )



  

The outcome 
● The hyperbolic black hole (2b) is always integrable for a 

closed winding string

● The spherical black hole (2b) is never integrable

● The toric and higher genus cases integrable for special 
values of BH mass and charge – for generic values the 
different invariant manifolds mix and spoil integrability



  

Numerical checks 
● Clearly no proof of integrability but can disprove it

● Careful: chaos -> nonintegrable but nonintegrable does 
not imply chaos – most noninterable string orbits are not 
chaotic!!!

● (1) Poincare surfaces of section (SOS) to visaulize the 
geometry of the phase space and KAM tori

● (2) Power spectrum – discrete -> integrable, continuous 
-> chaos; also bifurcations

● (3) Positive Lyapunov exponents (LE) -> chaos



  

KAM tori – hyperbolic horizon
● Direct visualization of KAM tori on Poincare surfaces of 

section (SOS)

(R , PR ) @ Θ=0, PΘ>0

R

PR

hyperbolic horizon K=23.84 ; m=1/2,q=1/6



  

KAM tori – toric horizon
● The orbits in real space do not make closed paths

R

PR

Toric horizon K=0.32 ; m=1 /2,q=1 /6

(R , PR ) @ Θ=0, PΘ>0



  

KAM tori – Brezel horizon
● Regular orbits for g=3

R

PR

Spherical horizon K=1.32; m=1/2,q=1/6

(R , PR ) @ Θ=0, PΘ>0



  

Power spectrum – Brezel horizon
● Quasi-periodic motion (not simply periodic – impossible 

for a string)

● Quick jump to chaos unless very close to horizon (will 
come back to this)

|X (ω)2| |X (ω)2|

ωωg=3 integrable g=3 non-integrable

m=1/3 m=1/3+1/100



  

Power spectrum – toric horizon
● Nonintegrable orbits exhibit universal Brownian 

spectrum:                      for toric horizon

● Apparently from the sum of many identical chaotic 
modes (integral of the white noise along the string)

X (ω)=1 /ω2

|X (ω)2|

ω logω

log|X (ω)2|



  

Other cases
● (1a) Integrable for special mass & charge

● Integral of motion:

● Weird – explicitly time-dependent integrable metric

ds2
=−fdt2+

dr 2

f
+
L4

R+

2
cosh2(R+

L2
t)

2

(d θ1
2
+sin2

θ1d θ2
2)

K=Θ1 ' cosh
2 (R+ t /L

2)



  

Other cases
● (1a) Integrable for special mass & charge

● Integral of motion:

● Weird – explicitly time-dependent integrable metric

● (2a) Non-integrable but has an extra integral of motion:

● (1b), (1ab), (2ab) – nope – the mixing of        -terms and 
     -terms spoils everything

Φ
T

ds2
=−fdt2+

dr 2

f
+
L4

R+

2
cosh2(R+

L2
t)

2

(d θ1
2
+sin2

θ1d θ2
2)

K=Θ1 ' cosh
2 (R+ t /L

2)

ds2
=−fdt2+

dr 2

f
+r2d ϕ1

2
+
L4

R+

2
cosh 2(R+

L2
t)

2

d θ1
2 ; K=Φ1 ' R

2
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Conjecture on the bound on chaos
● Maldacena, Shenker & Stanford 2016:                 for 

QFTs 

● This implies             for BH horizons and             for 
extremal BHs

λ≤2πT

λ=0λ≤κ

J. Maldacena



  

Conjecture on the bound on chaos
● Maldacena, Shenker & Stanford 2016:                 for 

QFTs 

● This implies             for BH horizons and             for 
extremal BHs

● Idea of the proof:

(1) define LE from a correlation function:

(2) show that                 is bounded by unity and analytic 
in the half-strip         

(3) apply the Schwarz-Pick theorem to obtain                  
the bound

λ≤2πT

λ=0λ≤κ

J. Maldacena

C (t+ i τ )
0≤t ,β/ 4≥τ

C (t)=⟨ [A (0), B(t )]
2
⟩
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Deep quantum 
effect
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What could go wrong?
● (1) reasonable, (3) rigorous maths

●  - correlation function might not factorize

 - polynomial decay for weak chaos (no well-defined 
"collision time"~1/T)

● Does it even work in curved spacetime?

● Many think yes. Sounds reasonable at least if there is a 
global timelike Killing

● In any case in asymptotically AdS should make sense 
through AdS/CFT

Deep quantum 
effect



  

Sanity check – integrable systems 
have zero LE 

● Systems (2b nonspherical) and (1a) have universal 
near-horizon variational equation:

● This means             – notice the plus sign in front of the 
second term!

δΦ ' '+2n2δΦ=0

λ=0



  

Higher winding modes in static 
metrics increase the bound

● No easy way to keep the string (or anything else) right 
at the horizon

● One approach: introduce external field to balance the 
horizon gravity (Hashimoto 2013) – but pair production? 
stability of the horizon?

● Expanding the variational equations near the horizon 
we get for stationary nonintegrable metrics (2a, 2ab):

● Higher winding numbers      violate the bound       times

● This wouldn't happen if there was a mass scale:

δΦ ' '−2( f ' (Rh ) )
2
n2δΦ=0 Naive LE: λ0∼κ×n

n n

En∼E0+n
2



  

Non-static metrics do not obey the 
bound

● No universal near-horizon variational equation

● For non-integrable cases the EOMs remain complicated 
(no extra integrals of motion); generically

● But this is perhaps expected – although staticity not 
assumed in the proof it plays a role in factorization of 
the OTOC

δΦ ' '+
T 0

f (R0
)
δΦ '−2 f '(Rh)

2
δ Φ=0⇒λ=limt→∞∫0

∞

d τ ' f ' (R0 ( τ ' ) )



  

Regularity of T=0 at the horizon

(1a) @ T=0
nonintegrable

(1b) @ T=0
nonintegrable

(2b) @ T=0
integrable

(1a) @ T=0.01
nonintegrable

(1b) @ T=0.01
nonintegrable

(2b) @ T=0.5
integrable



  

Some musings on the results...
● Understand TBHs. Cosmology? Or just AdS/CFT?

● Relation to AdS/CFT: look at open strings, these are 
connected to quarks in quark-gluon plasmas, tracer 
particles in hydrodynamics etc.

● Can we get                      for fields?λ0∼κ×2 s
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